基于Sentence-BERT和WordNet的越南语文本相似度检测混合方法

Son Cao, Huy V. Vo, Hang Le, D. Dinh
{"title":"基于Sentence-BERT和WordNet的越南语文本相似度检测混合方法","authors":"Son Cao, Huy V. Vo, Hang Le, D. Dinh","doi":"10.1145/3548636.3548645","DOIUrl":null,"url":null,"abstract":"In this paper, we explore the task of similarity detection, which determines whether two sentences have the same meaning. Although the task has shown to be important in many natural language processing applications, not much work has been done in Vietnamese. We present an approach based on Sentence-BERT (SBERT) model. Leveraging the pre-trained model and combining it with linguistic knowledge (WordNet), we then tested it on two popular Vietnamese datasets: vnPara and VNPC. Our best model achieves 97.62% F1 score on vnPara and 95.31% F1 score on VNPC.","PeriodicalId":384376,"journal":{"name":"Proceedings of the 4th International Conference on Information Technology and Computer Communications","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid approach for text similarity detection in Vietnamese based on Sentence-BERT and WordNet\",\"authors\":\"Son Cao, Huy V. Vo, Hang Le, D. Dinh\",\"doi\":\"10.1145/3548636.3548645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we explore the task of similarity detection, which determines whether two sentences have the same meaning. Although the task has shown to be important in many natural language processing applications, not much work has been done in Vietnamese. We present an approach based on Sentence-BERT (SBERT) model. Leveraging the pre-trained model and combining it with linguistic knowledge (WordNet), we then tested it on two popular Vietnamese datasets: vnPara and VNPC. Our best model achieves 97.62% F1 score on vnPara and 95.31% F1 score on VNPC.\",\"PeriodicalId\":384376,\"journal\":{\"name\":\"Proceedings of the 4th International Conference on Information Technology and Computer Communications\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 4th International Conference on Information Technology and Computer Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3548636.3548645\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th International Conference on Information Technology and Computer Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3548636.3548645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们探索了相似度检测任务,即确定两个句子是否具有相同的含义。尽管这项任务在许多自然语言处理应用中已经被证明是重要的,但在越南语中做的工作并不多。我们提出了一种基于句子- bert (SBERT)模型的方法。利用预训练模型并将其与语言知识(WordNet)相结合,然后我们在两个流行的越南数据集:vnPara和VNPC上对其进行了测试。我们的最佳模型在vnPara上的F1得分为97.62%,在VNPC上的F1得分为95.31%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid approach for text similarity detection in Vietnamese based on Sentence-BERT and WordNet
In this paper, we explore the task of similarity detection, which determines whether two sentences have the same meaning. Although the task has shown to be important in many natural language processing applications, not much work has been done in Vietnamese. We present an approach based on Sentence-BERT (SBERT) model. Leveraging the pre-trained model and combining it with linguistic knowledge (WordNet), we then tested it on two popular Vietnamese datasets: vnPara and VNPC. Our best model achieves 97.62% F1 score on vnPara and 95.31% F1 score on VNPC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信