个性化电视新闻节目的自动构建

B. Mérialdo, Kyung-Tak Lee, D. Luparello, Jeremie Roudaire
{"title":"个性化电视新闻节目的自动构建","authors":"B. Mérialdo, Kyung-Tak Lee, D. Luparello, Jeremie Roudaire","doi":"10.1145/319463.319637","DOIUrl":null,"url":null,"abstract":"In this paper, we study the automatic construction of personalized TV News programs, where we want to build a program with predefined duration and maximum content value for a specific user. We combine video indexing techniques to parse TV News recordings into stories, and information filtering techniques to select stories which are most adequate given the user profile. We formalize the selection process as an optimization problem, and we study how to take into account duration in the selection of stories. Experiments show that a simple heuristic can provide high quality selection with little computation. We also describe two prototypes, which implement two different mechanisms for the construction of user profiles:explicit specification, using a category-based model,\nimplicit specification, using a keyword-based model.\n","PeriodicalId":265329,"journal":{"name":"MULTIMEDIA '99","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"104","resultStr":"{\"title\":\"Automatic construction of personalized TV news programs\",\"authors\":\"B. Mérialdo, Kyung-Tak Lee, D. Luparello, Jeremie Roudaire\",\"doi\":\"10.1145/319463.319637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the automatic construction of personalized TV News programs, where we want to build a program with predefined duration and maximum content value for a specific user. We combine video indexing techniques to parse TV News recordings into stories, and information filtering techniques to select stories which are most adequate given the user profile. We formalize the selection process as an optimization problem, and we study how to take into account duration in the selection of stories. Experiments show that a simple heuristic can provide high quality selection with little computation. We also describe two prototypes, which implement two different mechanisms for the construction of user profiles:explicit specification, using a category-based model,\\nimplicit specification, using a keyword-based model.\\n\",\"PeriodicalId\":265329,\"journal\":{\"name\":\"MULTIMEDIA '99\",\"volume\":\"119 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"104\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MULTIMEDIA '99\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/319463.319637\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MULTIMEDIA '99","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/319463.319637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 104

摘要

在本文中,我们研究了个性化电视新闻节目的自动构建,我们想要为特定用户构建具有预定义时长和最大内容价值的节目。我们结合视频索引技术将电视新闻记录解析为故事,并结合信息过滤技术选择最适合用户配置文件的故事。我们将选择过程形式化为一个优化问题,并研究如何在选择故事时考虑持续时间。实验表明,一种简单的启发式算法可以以较少的计算量提供高质量的选择。我们还描述了两个原型,它们实现了构建用户配置文件的两种不同机制:显式规范,使用基于类别的模型;隐式规范,使用基于关键字的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic construction of personalized TV news programs
In this paper, we study the automatic construction of personalized TV News programs, where we want to build a program with predefined duration and maximum content value for a specific user. We combine video indexing techniques to parse TV News recordings into stories, and information filtering techniques to select stories which are most adequate given the user profile. We formalize the selection process as an optimization problem, and we study how to take into account duration in the selection of stories. Experiments show that a simple heuristic can provide high quality selection with little computation. We also describe two prototypes, which implement two different mechanisms for the construction of user profiles:explicit specification, using a category-based model, implicit specification, using a keyword-based model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信