P. Shiguihara-Juárez, Nils Murrugarra-Llerena, Alneu de Andrade Lopes
{"title":"生物医学文章中蛋白质-蛋白质相互作用提取的poss标签特征","authors":"P. Shiguihara-Juárez, Nils Murrugarra-Llerena, Alneu de Andrade Lopes","doi":"10.1109/INTERCON.2018.8526370","DOIUrl":null,"url":null,"abstract":"Protein-Protein Interaction (PPI) extraction from biomedical articles consists on extracting sentences were two or more proteins interact. Traditional articles tackle this problem creating more sophisticated classifiers. In contrast to them, we focus on discriminative features that can be exploited by traditional classifiers. Our method exploits information from POS-tags features and are combined with a bag-of-words approach. We used five standard corpora of PPI: Aimed, Bioinfer, HPRD50, IEPA and LLL. Our method is simple and achieves high results compared with other approaches. We achieve an improvement of 11% with our best competitor.","PeriodicalId":305576,"journal":{"name":"2018 IEEE XXV International Conference on Electronics, Electrical Engineering and Computing (INTERCON)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"POS-tags features for Protein-Protein Interaction Extraction from Biomedical Articles\",\"authors\":\"P. Shiguihara-Juárez, Nils Murrugarra-Llerena, Alneu de Andrade Lopes\",\"doi\":\"10.1109/INTERCON.2018.8526370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Protein-Protein Interaction (PPI) extraction from biomedical articles consists on extracting sentences were two or more proteins interact. Traditional articles tackle this problem creating more sophisticated classifiers. In contrast to them, we focus on discriminative features that can be exploited by traditional classifiers. Our method exploits information from POS-tags features and are combined with a bag-of-words approach. We used five standard corpora of PPI: Aimed, Bioinfer, HPRD50, IEPA and LLL. Our method is simple and achieves high results compared with other approaches. We achieve an improvement of 11% with our best competitor.\",\"PeriodicalId\":305576,\"journal\":{\"name\":\"2018 IEEE XXV International Conference on Electronics, Electrical Engineering and Computing (INTERCON)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE XXV International Conference on Electronics, Electrical Engineering and Computing (INTERCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INTERCON.2018.8526370\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE XXV International Conference on Electronics, Electrical Engineering and Computing (INTERCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INTERCON.2018.8526370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
POS-tags features for Protein-Protein Interaction Extraction from Biomedical Articles
Protein-Protein Interaction (PPI) extraction from biomedical articles consists on extracting sentences were two or more proteins interact. Traditional articles tackle this problem creating more sophisticated classifiers. In contrast to them, we focus on discriminative features that can be exploited by traditional classifiers. Our method exploits information from POS-tags features and are combined with a bag-of-words approach. We used five standard corpora of PPI: Aimed, Bioinfer, HPRD50, IEPA and LLL. Our method is simple and achieves high results compared with other approaches. We achieve an improvement of 11% with our best competitor.