生物医学文章中蛋白质-蛋白质相互作用提取的poss标签特征

P. Shiguihara-Juárez, Nils Murrugarra-Llerena, Alneu de Andrade Lopes
{"title":"生物医学文章中蛋白质-蛋白质相互作用提取的poss标签特征","authors":"P. Shiguihara-Juárez, Nils Murrugarra-Llerena, Alneu de Andrade Lopes","doi":"10.1109/INTERCON.2018.8526370","DOIUrl":null,"url":null,"abstract":"Protein-Protein Interaction (PPI) extraction from biomedical articles consists on extracting sentences were two or more proteins interact. Traditional articles tackle this problem creating more sophisticated classifiers. In contrast to them, we focus on discriminative features that can be exploited by traditional classifiers. Our method exploits information from POS-tags features and are combined with a bag-of-words approach. We used five standard corpora of PPI: Aimed, Bioinfer, HPRD50, IEPA and LLL. Our method is simple and achieves high results compared with other approaches. We achieve an improvement of 11% with our best competitor.","PeriodicalId":305576,"journal":{"name":"2018 IEEE XXV International Conference on Electronics, Electrical Engineering and Computing (INTERCON)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"POS-tags features for Protein-Protein Interaction Extraction from Biomedical Articles\",\"authors\":\"P. Shiguihara-Juárez, Nils Murrugarra-Llerena, Alneu de Andrade Lopes\",\"doi\":\"10.1109/INTERCON.2018.8526370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Protein-Protein Interaction (PPI) extraction from biomedical articles consists on extracting sentences were two or more proteins interact. Traditional articles tackle this problem creating more sophisticated classifiers. In contrast to them, we focus on discriminative features that can be exploited by traditional classifiers. Our method exploits information from POS-tags features and are combined with a bag-of-words approach. We used five standard corpora of PPI: Aimed, Bioinfer, HPRD50, IEPA and LLL. Our method is simple and achieves high results compared with other approaches. We achieve an improvement of 11% with our best competitor.\",\"PeriodicalId\":305576,\"journal\":{\"name\":\"2018 IEEE XXV International Conference on Electronics, Electrical Engineering and Computing (INTERCON)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE XXV International Conference on Electronics, Electrical Engineering and Computing (INTERCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INTERCON.2018.8526370\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE XXV International Conference on Electronics, Electrical Engineering and Computing (INTERCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INTERCON.2018.8526370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

从生物医学论文中提取蛋白质-蛋白质相互作用(PPI)是指提取两个或多个蛋白质相互作用的句子。传统文章通过创建更复杂的分类器来解决这个问题。与它们相反,我们关注的是传统分类器可以利用的判别特征。我们的方法利用pos标签特征的信息,并与词袋方法相结合。我们使用了5个PPI标准语料库:aims、Bioinfer、HPRD50、IEPA和LLL。与其他方法相比,我们的方法简单,效果好。我们比最好的竞争对手提高了11%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
POS-tags features for Protein-Protein Interaction Extraction from Biomedical Articles
Protein-Protein Interaction (PPI) extraction from biomedical articles consists on extracting sentences were two or more proteins interact. Traditional articles tackle this problem creating more sophisticated classifiers. In contrast to them, we focus on discriminative features that can be exploited by traditional classifiers. Our method exploits information from POS-tags features and are combined with a bag-of-words approach. We used five standard corpora of PPI: Aimed, Bioinfer, HPRD50, IEPA and LLL. Our method is simple and achieves high results compared with other approaches. We achieve an improvement of 11% with our best competitor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信