{"title":"α-布朗桥中近似极大似然估计的Berry-Esseen界","authors":"Khalifa Es-Sebaiy, Jabrane Moustaaid, I. Ouassou","doi":"10.31390/josa.2.2.08","DOIUrl":null,"url":null,"abstract":"Let T > 0, α > 1 2 . In this work we consider the problem of estimating the drift parameter of the α-Brownian bridge defined as dXt = −α Xt T−tdt + dWt, 0 ≤ t < T , where W is a standard Brownian motion. Assume that the process X is observed equidistantly in time with the step size ∆n := T n+1 , ti = i∆n, i = 0, ..., n. We will propose two approximate maximum likelihood estimators α̂n and ᾱn for the drift parameter α based on the discrete observations Xti , i = 0, ..., n. The consistency of those estimators is studied. Explicit bounds for the Kolmogorov distance in the central limit theorem for the estimators α̂n and ᾱn are obtained.","PeriodicalId":263604,"journal":{"name":"Journal of Stochastic Analysis","volume":"1998 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Berry-Esseen Bounds for Approximate Maximum Likelihood Estimators in the α-Brownian Bridge\",\"authors\":\"Khalifa Es-Sebaiy, Jabrane Moustaaid, I. Ouassou\",\"doi\":\"10.31390/josa.2.2.08\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let T > 0, α > 1 2 . In this work we consider the problem of estimating the drift parameter of the α-Brownian bridge defined as dXt = −α Xt T−tdt + dWt, 0 ≤ t < T , where W is a standard Brownian motion. Assume that the process X is observed equidistantly in time with the step size ∆n := T n+1 , ti = i∆n, i = 0, ..., n. We will propose two approximate maximum likelihood estimators α̂n and ᾱn for the drift parameter α based on the discrete observations Xti , i = 0, ..., n. The consistency of those estimators is studied. Explicit bounds for the Kolmogorov distance in the central limit theorem for the estimators α̂n and ᾱn are obtained.\",\"PeriodicalId\":263604,\"journal\":{\"name\":\"Journal of Stochastic Analysis\",\"volume\":\"1998 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Stochastic Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31390/josa.2.2.08\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Stochastic Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31390/josa.2.2.08","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
设T > 0, α > 1。本文研究了α-布朗桥漂移参数的估计问题,定义为dXt = - α Xt T - tdt + dWt, 0≤T < T,其中W为标准布朗运动。假设在时间上等距离观察过程X,其步长∆n:= T n+1, ti = i∆n, i = 0,…基于离散观测值Xti, i = 0,…,我们将对漂移参数α提出两个近似的极大似然估计量α n和α n。研究了这些估计量的相合性。给出了估计量α n和δ n的中心极限定理中Kolmogorov距离的显式界。
Berry-Esseen Bounds for Approximate Maximum Likelihood Estimators in the α-Brownian Bridge
Let T > 0, α > 1 2 . In this work we consider the problem of estimating the drift parameter of the α-Brownian bridge defined as dXt = −α Xt T−tdt + dWt, 0 ≤ t < T , where W is a standard Brownian motion. Assume that the process X is observed equidistantly in time with the step size ∆n := T n+1 , ti = i∆n, i = 0, ..., n. We will propose two approximate maximum likelihood estimators α̂n and ᾱn for the drift parameter α based on the discrete observations Xti , i = 0, ..., n. The consistency of those estimators is studied. Explicit bounds for the Kolmogorov distance in the central limit theorem for the estimators α̂n and ᾱn are obtained.