离线手写波斯语草书文本识别使用隐马尔可夫模型

Z. Imani, A. Ahmadyfard, A. Zohrevand, Mohamad Alipour
{"title":"离线手写波斯语草书文本识别使用隐马尔可夫模型","authors":"Z. Imani, A. Ahmadyfard, A. Zohrevand, Mohamad Alipour","doi":"10.1109/IRANIANMVIP.2013.6779953","DOIUrl":null,"url":null,"abstract":"In this paper we address the problem of recognizing Farsi handwritten words. We extract two types of features from vertical stripes on word images: chain-code of word boundary and distribution of foreground density across the image word. The extracted feature vectors are coded using self organizing vector quantization. The result codes are used for training the model of each word in the database. Each word is modeled using discrete hidden Markov models (HMM). In order to evaluate the performance of the proposed system we conducted an experiment using new prepared database FARSA. We tested the proposed method using 198 word classes in this database. The result of experiment in compare with the existing methods is very promising.","PeriodicalId":297204,"journal":{"name":"2013 8th Iranian Conference on Machine Vision and Image Processing (MVIP)","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Offline handwritten Farsi cursive text recognition using hidden Markov models\",\"authors\":\"Z. Imani, A. Ahmadyfard, A. Zohrevand, Mohamad Alipour\",\"doi\":\"10.1109/IRANIANMVIP.2013.6779953\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we address the problem of recognizing Farsi handwritten words. We extract two types of features from vertical stripes on word images: chain-code of word boundary and distribution of foreground density across the image word. The extracted feature vectors are coded using self organizing vector quantization. The result codes are used for training the model of each word in the database. Each word is modeled using discrete hidden Markov models (HMM). In order to evaluate the performance of the proposed system we conducted an experiment using new prepared database FARSA. We tested the proposed method using 198 word classes in this database. The result of experiment in compare with the existing methods is very promising.\",\"PeriodicalId\":297204,\"journal\":{\"name\":\"2013 8th Iranian Conference on Machine Vision and Image Processing (MVIP)\",\"volume\":\"100 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 8th Iranian Conference on Machine Vision and Image Processing (MVIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRANIANMVIP.2013.6779953\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 8th Iranian Conference on Machine Vision and Image Processing (MVIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRANIANMVIP.2013.6779953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文主要研究波斯语手写文字的识别问题。我们从单词图像上的垂直条纹中提取两种特征:单词边界链码和前景密度在图像单词上的分布。提取的特征向量采用自组织矢量量化编码。结果代码用于训练数据库中每个单词的模型。每个单词使用离散隐马尔可夫模型(HMM)建模。为了评估所提出的系统的性能,我们使用新准备的数据库FARSA进行了实验。我们使用该数据库中的198个词类对提出的方法进行了测试。实验结果与现有方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Offline handwritten Farsi cursive text recognition using hidden Markov models
In this paper we address the problem of recognizing Farsi handwritten words. We extract two types of features from vertical stripes on word images: chain-code of word boundary and distribution of foreground density across the image word. The extracted feature vectors are coded using self organizing vector quantization. The result codes are used for training the model of each word in the database. Each word is modeled using discrete hidden Markov models (HMM). In order to evaluate the performance of the proposed system we conducted an experiment using new prepared database FARSA. We tested the proposed method using 198 word classes in this database. The result of experiment in compare with the existing methods is very promising.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信