量化感知训练中的信道修剪:一种自适应投影梯度下降收缩分割方法

Zhijian Li, J. Xin
{"title":"量化感知训练中的信道修剪:一种自适应投影梯度下降收缩分割方法","authors":"Zhijian Li, J. Xin","doi":"10.1109/AI4I54798.2022.00015","DOIUrl":null,"url":null,"abstract":"We propose an adaptive projection-gradient descentshrinkage- splitting method (APGDSSM) to integrate penalty based channel pruning into quantization-aware training (QAT). APGDSSM concurrently searches weights in both the quantized subspace and the sparse subspace. APGDSSM uses shrinkage operator and a splitting technique to create sparse weights, as well as the Group Lasso penalty to push the weight sparsity into channel sparsity. In addition, we propose a novel complementary transformed l1 penalty to stabilize the training for extreme compression.","PeriodicalId":345427,"journal":{"name":"2022 5th International Conference on Artificial Intelligence for Industries (AI4I)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Channel Pruning in Quantization-aware Training: an Adaptive Projection-gradient Descent-shrinkage-splitting Method\",\"authors\":\"Zhijian Li, J. Xin\",\"doi\":\"10.1109/AI4I54798.2022.00015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an adaptive projection-gradient descentshrinkage- splitting method (APGDSSM) to integrate penalty based channel pruning into quantization-aware training (QAT). APGDSSM concurrently searches weights in both the quantized subspace and the sparse subspace. APGDSSM uses shrinkage operator and a splitting technique to create sparse weights, as well as the Group Lasso penalty to push the weight sparsity into channel sparsity. In addition, we propose a novel complementary transformed l1 penalty to stabilize the training for extreme compression.\",\"PeriodicalId\":345427,\"journal\":{\"name\":\"2022 5th International Conference on Artificial Intelligence for Industries (AI4I)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 5th International Conference on Artificial Intelligence for Industries (AI4I)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AI4I54798.2022.00015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 5th International Conference on Artificial Intelligence for Industries (AI4I)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AI4I54798.2022.00015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种自适应投影梯度下降收缩分裂方法(APGDSSM),将基于惩罚的信道修剪整合到量化感知训练(QAT)中。APGDSSM同时在量化子空间和稀疏子空间中搜索权值。APGDSSM使用收缩运算符和分割技术来创建稀疏权值,并使用Group Lasso惩罚将权值稀疏性推入信道稀疏性。此外,我们提出了一种新的互补变换l1惩罚来稳定极端压缩训练。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Channel Pruning in Quantization-aware Training: an Adaptive Projection-gradient Descent-shrinkage-splitting Method
We propose an adaptive projection-gradient descentshrinkage- splitting method (APGDSSM) to integrate penalty based channel pruning into quantization-aware training (QAT). APGDSSM concurrently searches weights in both the quantized subspace and the sparse subspace. APGDSSM uses shrinkage operator and a splitting technique to create sparse weights, as well as the Group Lasso penalty to push the weight sparsity into channel sparsity. In addition, we propose a novel complementary transformed l1 penalty to stabilize the training for extreme compression.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信