基于小分量分析的系统建模的有效总最小二乘方法

Y. Rao, J. Príncipe
{"title":"基于小分量分析的系统建模的有效总最小二乘方法","authors":"Y. Rao, J. Príncipe","doi":"10.1109/NNSP.2002.1030037","DOIUrl":null,"url":null,"abstract":"We present two algorithms to solve the total least-squares (TLS) problem. The algorithms are on-line with O(N/sup 2/) and O(N) complexity. The convergence of the algorithms is significantly faster than the traditional methods. A mathematical analysis of convergence is also provided along with simulations to substantiate the claims. We also apply the TLS algorithms for FIR system identification with known model order in the presence of noise.","PeriodicalId":117945,"journal":{"name":"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Efficient total least squares method for system modeling using minor component analysis\",\"authors\":\"Y. Rao, J. Príncipe\",\"doi\":\"10.1109/NNSP.2002.1030037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present two algorithms to solve the total least-squares (TLS) problem. The algorithms are on-line with O(N/sup 2/) and O(N) complexity. The convergence of the algorithms is significantly faster than the traditional methods. A mathematical analysis of convergence is also provided along with simulations to substantiate the claims. We also apply the TLS algorithms for FIR system identification with known model order in the presence of noise.\",\"PeriodicalId\":117945,\"journal\":{\"name\":\"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NNSP.2002.1030037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.2002.1030037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

提出了两种求解总最小二乘(TLS)问题的算法。算法是在线的,复杂度为0 (N/sup 2/)和0 (N)。该算法的收敛速度明显快于传统方法。还提供了收敛的数学分析以及模拟来证实这些说法。我们还将TLS算法应用于存在噪声的已知模型阶数的FIR系统辨识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient total least squares method for system modeling using minor component analysis
We present two algorithms to solve the total least-squares (TLS) problem. The algorithms are on-line with O(N/sup 2/) and O(N) complexity. The convergence of the algorithms is significantly faster than the traditional methods. A mathematical analysis of convergence is also provided along with simulations to substantiate the claims. We also apply the TLS algorithms for FIR system identification with known model order in the presence of noise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信