地理空间分析系统的高效网络核密度可视化库

Tsz Nam Chan, Rui Zang, Pak Lon Ip, Leong Hou U, Jianliang Xu
{"title":"地理空间分析系统的高效网络核密度可视化库","authors":"Tsz Nam Chan, Rui Zang, Pak Lon Ip, Leong Hou U, Jianliang Xu","doi":"10.1145/3555041.3589711","DOIUrl":null,"url":null,"abstract":"Network kernel density visualization (NKDV) is an important tool for many application domains, including criminology and transportation science. However, all existing software tools, e.g., SANET (a plug-in for QGIS and ArcGIS) and spNetwork (an R package), adopt the naïve implementation of NKDV, which does not scale to large-scale location datasets and high-resolution sizes. To overcome this issue, we develop the first python library, called PyNKDV, which adopts our complexity-reduced solution and its parallel implementation to significantly improve the efficiency for generating NKDV. Moreover, PyNKDV is also user friendly (with four lines of python code) and can support commonly used geospatial analytic systems (e.g., QGIS and ArcGIS). In this demonstration, we will use three large-scale location datasets (up to 7.71 million data points), provide different python scripts (in the Jupyter Notebook), and install existing software tools (i.e., SANET and spNetwork) for participants to (1) explore different functionalities of our PyNKDV library and (2) compare its practical efficiency with existing software tools.","PeriodicalId":161812,"journal":{"name":"Companion of the 2023 International Conference on Management of Data","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"PyNKDV: An Efficient Network Kernel Density Visualization Library for Geospatial Analytic Systems\",\"authors\":\"Tsz Nam Chan, Rui Zang, Pak Lon Ip, Leong Hou U, Jianliang Xu\",\"doi\":\"10.1145/3555041.3589711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Network kernel density visualization (NKDV) is an important tool for many application domains, including criminology and transportation science. However, all existing software tools, e.g., SANET (a plug-in for QGIS and ArcGIS) and spNetwork (an R package), adopt the naïve implementation of NKDV, which does not scale to large-scale location datasets and high-resolution sizes. To overcome this issue, we develop the first python library, called PyNKDV, which adopts our complexity-reduced solution and its parallel implementation to significantly improve the efficiency for generating NKDV. Moreover, PyNKDV is also user friendly (with four lines of python code) and can support commonly used geospatial analytic systems (e.g., QGIS and ArcGIS). In this demonstration, we will use three large-scale location datasets (up to 7.71 million data points), provide different python scripts (in the Jupyter Notebook), and install existing software tools (i.e., SANET and spNetwork) for participants to (1) explore different functionalities of our PyNKDV library and (2) compare its practical efficiency with existing software tools.\",\"PeriodicalId\":161812,\"journal\":{\"name\":\"Companion of the 2023 International Conference on Management of Data\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Companion of the 2023 International Conference on Management of Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3555041.3589711\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion of the 2023 International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3555041.3589711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

网络核密度可视化(NKDV)是犯罪学、交通科学等许多应用领域的重要工具。然而,所有现有的软件工具,如SANET (QGIS和ArcGIS的插件)和spNetwork(一个R包),都采用了naïve实现的NKDV,它不能扩展到大规模的位置数据集和高分辨率的尺寸。为了克服这个问题,我们开发了第一个python库,称为PyNKDV,它采用了我们的复杂性降低解决方案及其并行实现,以显着提高生成NKDV的效率。此外,PyNKDV也是用户友好的(有四行python代码),可以支持常用的地理空间分析系统(例如,QGIS和ArcGIS)。在本次演示中,我们将使用三个大规模的位置数据集(多达771万个数据点),提供不同的python脚本(在Jupyter Notebook中),并安装现有的软件工具(即SANET和spNetwork),供参与者(1)探索我们的PyNKDV库的不同功能,(2)将其实际效率与现有软件工具进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PyNKDV: An Efficient Network Kernel Density Visualization Library for Geospatial Analytic Systems
Network kernel density visualization (NKDV) is an important tool for many application domains, including criminology and transportation science. However, all existing software tools, e.g., SANET (a plug-in for QGIS and ArcGIS) and spNetwork (an R package), adopt the naïve implementation of NKDV, which does not scale to large-scale location datasets and high-resolution sizes. To overcome this issue, we develop the first python library, called PyNKDV, which adopts our complexity-reduced solution and its parallel implementation to significantly improve the efficiency for generating NKDV. Moreover, PyNKDV is also user friendly (with four lines of python code) and can support commonly used geospatial analytic systems (e.g., QGIS and ArcGIS). In this demonstration, we will use three large-scale location datasets (up to 7.71 million data points), provide different python scripts (in the Jupyter Notebook), and install existing software tools (i.e., SANET and spNetwork) for participants to (1) explore different functionalities of our PyNKDV library and (2) compare its practical efficiency with existing software tools.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信