基于混合层次遗传模糊模型的精度保持可解释性:以运动规划机器人控制器为例

I. Kallel, N. Baklouti, A. Alimi
{"title":"基于混合层次遗传模糊模型的精度保持可解释性:以运动规划机器人控制器为例","authors":"I. Kallel, N. Baklouti, A. Alimi","doi":"10.1109/ISEFS.2006.251151","DOIUrl":null,"url":null,"abstract":"Design of robot controller for motion planning, using fuzzy logic control, requires formulation of rules that are collectively responsible for necessary levels of intelligent behaviors. To ensure the model interpretability, this collection of rules can be naturally decomposed and efficiently implemented as a hierarchical fuzzy model. This paper describes how this can be done using hybrid hierarchical genetic fuzzy modeling. The idea is to combine, in a hierarchical design, \"mapping\" for sub-goal behavior (SGB), and \"reactivity\" for local avoiding obstacles behavior (LAOB), to have at the same time, an interpretable and precise communicating system for robot motion planning controller. The design of each fuzzy unit of the hierarchical model is automatically ensured by MAGAD-BFS method (multi-agent genetic algorithm for the design of beta fuzzy systems), promoting itself as an interpretability-accuracy trade-off. A proposed reduced version of generalized local Voronoi diagram (RGLVD) comes to guarantee a high degree of precision for robot motion to attempt destinations (sub-goals). Compared to the navigation using only fuzzy rules controller, the hybrid hierarchical model is more efficient in terms of saving time and optimizing path","PeriodicalId":269492,"journal":{"name":"2006 International Symposium on Evolving Fuzzy Systems","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Accuracy Preserving Interpretability with Hybrid Hierarchical Genetic Fuzzy Modeling: Case of Motion Planning Robot Controller\",\"authors\":\"I. Kallel, N. Baklouti, A. Alimi\",\"doi\":\"10.1109/ISEFS.2006.251151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Design of robot controller for motion planning, using fuzzy logic control, requires formulation of rules that are collectively responsible for necessary levels of intelligent behaviors. To ensure the model interpretability, this collection of rules can be naturally decomposed and efficiently implemented as a hierarchical fuzzy model. This paper describes how this can be done using hybrid hierarchical genetic fuzzy modeling. The idea is to combine, in a hierarchical design, \\\"mapping\\\" for sub-goal behavior (SGB), and \\\"reactivity\\\" for local avoiding obstacles behavior (LAOB), to have at the same time, an interpretable and precise communicating system for robot motion planning controller. The design of each fuzzy unit of the hierarchical model is automatically ensured by MAGAD-BFS method (multi-agent genetic algorithm for the design of beta fuzzy systems), promoting itself as an interpretability-accuracy trade-off. A proposed reduced version of generalized local Voronoi diagram (RGLVD) comes to guarantee a high degree of precision for robot motion to attempt destinations (sub-goals). Compared to the navigation using only fuzzy rules controller, the hybrid hierarchical model is more efficient in terms of saving time and optimizing path\",\"PeriodicalId\":269492,\"journal\":{\"name\":\"2006 International Symposium on Evolving Fuzzy Systems\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 International Symposium on Evolving Fuzzy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISEFS.2006.251151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Symposium on Evolving Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISEFS.2006.251151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

使用模糊逻辑控制进行机器人运动规划控制器的设计,需要制定规则,这些规则共同负责必要的智能行为层次。为了保证模型的可解释性,该规则集合可以被自然分解并有效地实现为层次模糊模型。本文描述了如何使用混合层次遗传模糊建模来实现这一目标。该思想是在分层设计中结合子目标行为(SGB)的“映射”和局部避障行为(LAOB)的“反应性”,同时为机器人运动规划控制器提供一个可解释和精确的通信系统。分层模型的每个模糊单元的设计由MAGAD-BFS方法(用于设计beta模糊系统的多智能体遗传算法)自动确保,从而促进了可解释性与准确性之间的权衡。提出了广义局部Voronoi图(RGLVD)的简化版本,以保证机器人运动到尝试目的地(子目标)的高度精度。与仅使用模糊规则控制器的导航相比,混合层次模型在节省时间和优化路径方面更有效
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accuracy Preserving Interpretability with Hybrid Hierarchical Genetic Fuzzy Modeling: Case of Motion Planning Robot Controller
Design of robot controller for motion planning, using fuzzy logic control, requires formulation of rules that are collectively responsible for necessary levels of intelligent behaviors. To ensure the model interpretability, this collection of rules can be naturally decomposed and efficiently implemented as a hierarchical fuzzy model. This paper describes how this can be done using hybrid hierarchical genetic fuzzy modeling. The idea is to combine, in a hierarchical design, "mapping" for sub-goal behavior (SGB), and "reactivity" for local avoiding obstacles behavior (LAOB), to have at the same time, an interpretable and precise communicating system for robot motion planning controller. The design of each fuzzy unit of the hierarchical model is automatically ensured by MAGAD-BFS method (multi-agent genetic algorithm for the design of beta fuzzy systems), promoting itself as an interpretability-accuracy trade-off. A proposed reduced version of generalized local Voronoi diagram (RGLVD) comes to guarantee a high degree of precision for robot motion to attempt destinations (sub-goals). Compared to the navigation using only fuzzy rules controller, the hybrid hierarchical model is more efficient in terms of saving time and optimizing path
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信