Yukang Feng, M. Dejarld, R. Weikle, Linli Xie, P. Campbell, R. Myers-Ward, D. Gaskill, N. Scott Barker
{"title":"基于石墨烯光热电效应的毫米波探测","authors":"Yukang Feng, M. Dejarld, R. Weikle, Linli Xie, P. Campbell, R. Myers-Ward, D. Gaskill, N. Scott Barker","doi":"10.23919/eumc.2018.8541648","DOIUrl":null,"url":null,"abstract":"In this paper, millimeter-wave detection is conducted for the first time on the basis of graphene photo-thermoelectric effect. Upon receiving millimeter-wave radiation, graphene generates hot carriers which diffuse towards the nearby drain and source contact metals, and causing a differential drain-source voltage. To optimize detection performance, devices with different drain and source contact metals as well as graphene geometries are designed and tested. Measured results show that using Yb-graphene-Au metal combination with a 25 μm contact length perform the best, with a responsivity of 1.99 V/W.","PeriodicalId":248339,"journal":{"name":"2018 13th European Microwave Integrated Circuits Conference (EuMIC)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Millimeter- Wave Detection on Basis of Graphene Photo-Thermoelectric Effect\",\"authors\":\"Yukang Feng, M. Dejarld, R. Weikle, Linli Xie, P. Campbell, R. Myers-Ward, D. Gaskill, N. Scott Barker\",\"doi\":\"10.23919/eumc.2018.8541648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, millimeter-wave detection is conducted for the first time on the basis of graphene photo-thermoelectric effect. Upon receiving millimeter-wave radiation, graphene generates hot carriers which diffuse towards the nearby drain and source contact metals, and causing a differential drain-source voltage. To optimize detection performance, devices with different drain and source contact metals as well as graphene geometries are designed and tested. Measured results show that using Yb-graphene-Au metal combination with a 25 μm contact length perform the best, with a responsivity of 1.99 V/W.\",\"PeriodicalId\":248339,\"journal\":{\"name\":\"2018 13th European Microwave Integrated Circuits Conference (EuMIC)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 13th European Microwave Integrated Circuits Conference (EuMIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/eumc.2018.8541648\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 13th European Microwave Integrated Circuits Conference (EuMIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/eumc.2018.8541648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Millimeter- Wave Detection on Basis of Graphene Photo-Thermoelectric Effect
In this paper, millimeter-wave detection is conducted for the first time on the basis of graphene photo-thermoelectric effect. Upon receiving millimeter-wave radiation, graphene generates hot carriers which diffuse towards the nearby drain and source contact metals, and causing a differential drain-source voltage. To optimize detection performance, devices with different drain and source contact metals as well as graphene geometries are designed and tested. Measured results show that using Yb-graphene-Au metal combination with a 25 μm contact length perform the best, with a responsivity of 1.99 V/W.