支持向量机与汉明距离用于虹膜识别的比较研究

A. Rehman, Laiq Hassan, Nasir Ahmad, Kashif Ahmad, Shakirullah Shakirullah
{"title":"支持向量机与汉明距离用于虹膜识别的比较研究","authors":"A. Rehman, Laiq Hassan, Nasir Ahmad, Kashif Ahmad, Shakirullah Shakirullah","doi":"10.25211/jeas.v34i1.22","DOIUrl":null,"url":null,"abstract":"This paper presents a comparative study of two well-known classification techniques of iris patterns, along with detailed description of some preprocessing steps. In preprocessing stage, Circular Hough Transform and Canny Edge Detector are employed for iris segmentation, while for iris normalization and feature extraction, the Rubber Sheet Model and one-dimensional (1-D) Log-Gabor Filter are used respectively. Finally for classification/matching of iris patterns, Hamming Distance and Support Vector Machine (SVM) are applied. The evaluation results on CASIA V.1 dataset show that Hamming distance algorithm is more suitable for the classification (with average accuracy of 93.85 %) of iris patterns.","PeriodicalId":167225,"journal":{"name":"Journal of Engineering and Applied Sciences , University of Engineering and Technology, Peshawar","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"COMPARATIVE STUDY OF SUPPORT VECTOR MACHINE AND HAMMING DISTANCE USED FOR IRIS RECOGNITION\",\"authors\":\"A. Rehman, Laiq Hassan, Nasir Ahmad, Kashif Ahmad, Shakirullah Shakirullah\",\"doi\":\"10.25211/jeas.v34i1.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a comparative study of two well-known classification techniques of iris patterns, along with detailed description of some preprocessing steps. In preprocessing stage, Circular Hough Transform and Canny Edge Detector are employed for iris segmentation, while for iris normalization and feature extraction, the Rubber Sheet Model and one-dimensional (1-D) Log-Gabor Filter are used respectively. Finally for classification/matching of iris patterns, Hamming Distance and Support Vector Machine (SVM) are applied. The evaluation results on CASIA V.1 dataset show that Hamming distance algorithm is more suitable for the classification (with average accuracy of 93.85 %) of iris patterns.\",\"PeriodicalId\":167225,\"journal\":{\"name\":\"Journal of Engineering and Applied Sciences , University of Engineering and Technology, Peshawar\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering and Applied Sciences , University of Engineering and Technology, Peshawar\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25211/jeas.v34i1.22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering and Applied Sciences , University of Engineering and Technology, Peshawar","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25211/jeas.v34i1.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文对两种知名的虹膜模式分类技术进行了比较研究,并详细介绍了一些预处理步骤。预处理阶段采用圆形霍夫变换和Canny边缘检测器进行虹膜分割,虹膜归一化和特征提取分别采用橡胶板模型和一维Log-Gabor滤波器。最后,将汉明距离和支持向量机(SVM)应用于虹膜模式的分类与匹配。在CASIA V.1数据集上的评价结果表明,Hamming距离算法更适合虹膜模式的分类,平均准确率为93.85%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
COMPARATIVE STUDY OF SUPPORT VECTOR MACHINE AND HAMMING DISTANCE USED FOR IRIS RECOGNITION
This paper presents a comparative study of two well-known classification techniques of iris patterns, along with detailed description of some preprocessing steps. In preprocessing stage, Circular Hough Transform and Canny Edge Detector are employed for iris segmentation, while for iris normalization and feature extraction, the Rubber Sheet Model and one-dimensional (1-D) Log-Gabor Filter are used respectively. Finally for classification/matching of iris patterns, Hamming Distance and Support Vector Machine (SVM) are applied. The evaluation results on CASIA V.1 dataset show that Hamming distance algorithm is more suitable for the classification (with average accuracy of 93.85 %) of iris patterns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信