{"title":"面向容错网络的统一路由框架","authors":"S. Burleigh, C. Caini, J.J. Messina, M. Rodolfi","doi":"10.1109/WiSEE.2016.7877309","DOIUrl":null,"url":null,"abstract":"Routing in Delay-/Disruption-Tolerant Networking (DTN) has long been recognized as a challenging research topic. The difficulty lies in the fact that link intermittency and network partitioning, possibly coupled with long delays, prevent the use of Internet solutions based on an up-to-date comprehensive knowledge of network topology, as communicated by routing protocols. In the literature on DTN routing, there is a dichotomy between solutions designed for deterministic (e.g., space flight) networks, such as Contact Graph Routing (CGR), and the wide variety of protocols designed for opportunistic terrestrial networks. After a discussion of the origin and motivations of this duality, the paper presents an opportunistic extension of CGR (OCGR). The aim is to try to resolve the DTN routing dichotomy by providing a unified approach suitable for all DTN environments.","PeriodicalId":177862,"journal":{"name":"2016 IEEE International Conference on Wireless for Space and Extreme Environments (WiSEE)","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Toward a unified routing framework for delay-tolerant networking\",\"authors\":\"S. Burleigh, C. Caini, J.J. Messina, M. Rodolfi\",\"doi\":\"10.1109/WiSEE.2016.7877309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Routing in Delay-/Disruption-Tolerant Networking (DTN) has long been recognized as a challenging research topic. The difficulty lies in the fact that link intermittency and network partitioning, possibly coupled with long delays, prevent the use of Internet solutions based on an up-to-date comprehensive knowledge of network topology, as communicated by routing protocols. In the literature on DTN routing, there is a dichotomy between solutions designed for deterministic (e.g., space flight) networks, such as Contact Graph Routing (CGR), and the wide variety of protocols designed for opportunistic terrestrial networks. After a discussion of the origin and motivations of this duality, the paper presents an opportunistic extension of CGR (OCGR). The aim is to try to resolve the DTN routing dichotomy by providing a unified approach suitable for all DTN environments.\",\"PeriodicalId\":177862,\"journal\":{\"name\":\"2016 IEEE International Conference on Wireless for Space and Extreme Environments (WiSEE)\",\"volume\":\"103 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Wireless for Space and Extreme Environments (WiSEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WiSEE.2016.7877309\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Wireless for Space and Extreme Environments (WiSEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WiSEE.2016.7877309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Toward a unified routing framework for delay-tolerant networking
Routing in Delay-/Disruption-Tolerant Networking (DTN) has long been recognized as a challenging research topic. The difficulty lies in the fact that link intermittency and network partitioning, possibly coupled with long delays, prevent the use of Internet solutions based on an up-to-date comprehensive knowledge of network topology, as communicated by routing protocols. In the literature on DTN routing, there is a dichotomy between solutions designed for deterministic (e.g., space flight) networks, such as Contact Graph Routing (CGR), and the wide variety of protocols designed for opportunistic terrestrial networks. After a discussion of the origin and motivations of this duality, the paper presents an opportunistic extension of CGR (OCGR). The aim is to try to resolve the DTN routing dichotomy by providing a unified approach suitable for all DTN environments.