基于多模加速器的深度神经网络

A. Ardakani, C. Condo, W. Gross
{"title":"基于多模加速器的深度神经网络","authors":"A. Ardakani, C. Condo, W. Gross","doi":"10.1109/NEWCAS.2018.8585517","DOIUrl":null,"url":null,"abstract":"Convolutional Neural Networks (CNNs) are constituted of complex, slow convolutional layers and memory-demanding fully- connected layers. Current pruning techniques can reduce memory accesses and power consumption, but cannot speed up the convolutional layers. In this paper, we introduce a pruning technique able to reduce the number of kernels in convolutional layers of up to 90% with negligible accuracy degradation. We propose an architecture to accelerate fully- connected and convolutional computations within a single computational core, with power$/$energy consumption below mobile devices budget. The proposed pruning technique speeds up convolutional computations by up to $ 6.9\\times $, reducing memory accesses by the same factor.","PeriodicalId":112526,"journal":{"name":"2018 16th IEEE International New Circuits and Systems Conference (NEWCAS)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Multi-Mode Accelerator for Pruned Deep Neural Networks\",\"authors\":\"A. Ardakani, C. Condo, W. Gross\",\"doi\":\"10.1109/NEWCAS.2018.8585517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convolutional Neural Networks (CNNs) are constituted of complex, slow convolutional layers and memory-demanding fully- connected layers. Current pruning techniques can reduce memory accesses and power consumption, but cannot speed up the convolutional layers. In this paper, we introduce a pruning technique able to reduce the number of kernels in convolutional layers of up to 90% with negligible accuracy degradation. We propose an architecture to accelerate fully- connected and convolutional computations within a single computational core, with power$/$energy consumption below mobile devices budget. The proposed pruning technique speeds up convolutional computations by up to $ 6.9\\\\times $, reducing memory accesses by the same factor.\",\"PeriodicalId\":112526,\"journal\":{\"name\":\"2018 16th IEEE International New Circuits and Systems Conference (NEWCAS)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 16th IEEE International New Circuits and Systems Conference (NEWCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEWCAS.2018.8585517\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 16th IEEE International New Circuits and Systems Conference (NEWCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEWCAS.2018.8585517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

卷积神经网络(cnn)由复杂的慢卷积层和对内存要求高的全连接层组成。目前的剪枝技术可以减少内存访问和功耗,但不能提高卷积层的速度。在本文中,我们介绍了一种修剪技术,能够减少卷积层中高达90%的核数,而精度下降可以忽略不计。我们提出了一种架构,可以在单个计算核心内加速全连接和卷积计算,功耗低于移动设备预算。提出的修剪技术将卷积计算速度提高了6.9倍,减少了相同因素的内存访问。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Multi-Mode Accelerator for Pruned Deep Neural Networks
Convolutional Neural Networks (CNNs) are constituted of complex, slow convolutional layers and memory-demanding fully- connected layers. Current pruning techniques can reduce memory accesses and power consumption, but cannot speed up the convolutional layers. In this paper, we introduce a pruning technique able to reduce the number of kernels in convolutional layers of up to 90% with negligible accuracy degradation. We propose an architecture to accelerate fully- connected and convolutional computations within a single computational core, with power$/$energy consumption below mobile devices budget. The proposed pruning technique speeds up convolutional computations by up to $ 6.9\times $, reducing memory accesses by the same factor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信