基于优势小波包能量特征的纹理分类

Moon-Chuen Lee, Chi-Man Pun
{"title":"基于优势小波包能量特征的纹理分类","authors":"Moon-Chuen Lee, Chi-Man Pun","doi":"10.1109/IAI.2000.839620","DOIUrl":null,"url":null,"abstract":"This paper proposes a high performance texture classification method using dominant energy features from wavelet packet decomposition. We decompose the texture images with a family of real orthonormal wavelet bases and compute the energy signatures using the wavelet packet coefficients. Then we select a few of the most dominant energy values as features and employ a Mahalanobis distance classifier to classify a set of distinct natural textures selected from the Brodatz album. In our experiments, the proposed method employed a reduced feature set and involved less computation in classification time while still archiving high accuracy rate (94.8%) for classifying twenty classes of natural texture images.","PeriodicalId":224112,"journal":{"name":"4th IEEE Southwest Symposium on Image Analysis and Interpretation","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"Texture classification using dominant wavelet packet energy features\",\"authors\":\"Moon-Chuen Lee, Chi-Man Pun\",\"doi\":\"10.1109/IAI.2000.839620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a high performance texture classification method using dominant energy features from wavelet packet decomposition. We decompose the texture images with a family of real orthonormal wavelet bases and compute the energy signatures using the wavelet packet coefficients. Then we select a few of the most dominant energy values as features and employ a Mahalanobis distance classifier to classify a set of distinct natural textures selected from the Brodatz album. In our experiments, the proposed method employed a reduced feature set and involved less computation in classification time while still archiving high accuracy rate (94.8%) for classifying twenty classes of natural texture images.\",\"PeriodicalId\":224112,\"journal\":{\"name\":\"4th IEEE Southwest Symposium on Image Analysis and Interpretation\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"4th IEEE Southwest Symposium on Image Analysis and Interpretation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAI.2000.839620\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"4th IEEE Southwest Symposium on Image Analysis and Interpretation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAI.2000.839620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

摘要

提出了一种基于小波包分解优势能量特征的高性能纹理分类方法。利用一组实正交小波基对纹理图像进行分解,利用小波包系数计算纹理图像的能量特征。然后,我们选择几个最主要的能量值作为特征,并使用马氏距离分类器对从Brodatz专辑中选择的一组不同的自然纹理进行分类。在我们的实验中,所提出的方法采用了简化的特征集,在分类时间上的计算量更少,同时对20类自然纹理图像的分类准确率仍然很高(94.8%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Texture classification using dominant wavelet packet energy features
This paper proposes a high performance texture classification method using dominant energy features from wavelet packet decomposition. We decompose the texture images with a family of real orthonormal wavelet bases and compute the energy signatures using the wavelet packet coefficients. Then we select a few of the most dominant energy values as features and employ a Mahalanobis distance classifier to classify a set of distinct natural textures selected from the Brodatz album. In our experiments, the proposed method employed a reduced feature set and involved less computation in classification time while still archiving high accuracy rate (94.8%) for classifying twenty classes of natural texture images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信