{"title":"BCP/MoO3复合阴极缓冲层对有机光电探测器性能的改善","authors":"Xinying Liu, T. An, Wei Gong","doi":"10.1109/EDSSC.2019.8754227","DOIUrl":null,"url":null,"abstract":"In this paper, bulk heterojunction organic photodetectors based on P3HT: PC61 BM as the active layer were fabricated and the effects of BCP/MoO3 composite cathode buffer layers on the photoelectric properties of the devices were also investigated. The results show that the wide bandgap BCP has a good blocking effect on the holes in the BCP/MoO3 buffer layer structure, which reduces the dark current and contacts with MoO3 to produce a built-in electric field conducive to electron transport and further improve the photocurrent, thus increasing the specific detectivity. The resulting organic photodetector shows a 1.33 $\\times 10^{11}$ Jones specific detectivity at a reverse bias of 0.5 V under 515 nm (3 mw/cm2) illumination.","PeriodicalId":183887,"journal":{"name":"2019 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improvement of BCP/MoO3 Composite Cathode Buffer Layer on the Performances of Organic Photodetectors\",\"authors\":\"Xinying Liu, T. An, Wei Gong\",\"doi\":\"10.1109/EDSSC.2019.8754227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, bulk heterojunction organic photodetectors based on P3HT: PC61 BM as the active layer were fabricated and the effects of BCP/MoO3 composite cathode buffer layers on the photoelectric properties of the devices were also investigated. The results show that the wide bandgap BCP has a good blocking effect on the holes in the BCP/MoO3 buffer layer structure, which reduces the dark current and contacts with MoO3 to produce a built-in electric field conducive to electron transport and further improve the photocurrent, thus increasing the specific detectivity. The resulting organic photodetector shows a 1.33 $\\\\times 10^{11}$ Jones specific detectivity at a reverse bias of 0.5 V under 515 nm (3 mw/cm2) illumination.\",\"PeriodicalId\":183887,\"journal\":{\"name\":\"2019 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EDSSC.2019.8754227\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDSSC.2019.8754227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improvement of BCP/MoO3 Composite Cathode Buffer Layer on the Performances of Organic Photodetectors
In this paper, bulk heterojunction organic photodetectors based on P3HT: PC61 BM as the active layer were fabricated and the effects of BCP/MoO3 composite cathode buffer layers on the photoelectric properties of the devices were also investigated. The results show that the wide bandgap BCP has a good blocking effect on the holes in the BCP/MoO3 buffer layer structure, which reduces the dark current and contacts with MoO3 to produce a built-in electric field conducive to electron transport and further improve the photocurrent, thus increasing the specific detectivity. The resulting organic photodetector shows a 1.33 $\times 10^{11}$ Jones specific detectivity at a reverse bias of 0.5 V under 515 nm (3 mw/cm2) illumination.