二部图及其二部补图的连通性

Yingzhi Tian, Huaping Ma, Liyun Wu
{"title":"二部图及其二部补图的连通性","authors":"Yingzhi Tian, Huaping Ma, Liyun Wu","doi":"10.1142/S0129626420400058","DOIUrl":null,"url":null,"abstract":"In 1956, Nordhaus and Gaddum gave lower and upper bounds on the sum and the product of the chromatic number of a graph and its complement, in terms of the order of the graph. Since then, any bound on the sum and/or the product of an invariant in a graph [Formula: see text] and the same invariant in the complement [Formula: see text] of [Formula: see text] is called a Nordhaus-Gaddum type inequality or relation. The Nordhaus-Gaddum type inequalities for connectivity have been studied by several authors. For a bipartite graph [Formula: see text] with bipartition ([Formula: see text]), its bipartite complementary graph [Formula: see text] is a bipartite graph with [Formula: see text] and [Formula: see text] and [Formula: see text]. In this paper, we obtain the Nordhaus-Gaddum type inequalities for connectivity of bipartite graphs and its bipartite complementary graphs. Furthermore, we prove that these inequalities are best possible.","PeriodicalId":422436,"journal":{"name":"Parallel Process. Lett.","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Connectivity of a Bipartite Graph and Its Bipartite Complementary Graph\",\"authors\":\"Yingzhi Tian, Huaping Ma, Liyun Wu\",\"doi\":\"10.1142/S0129626420400058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 1956, Nordhaus and Gaddum gave lower and upper bounds on the sum and the product of the chromatic number of a graph and its complement, in terms of the order of the graph. Since then, any bound on the sum and/or the product of an invariant in a graph [Formula: see text] and the same invariant in the complement [Formula: see text] of [Formula: see text] is called a Nordhaus-Gaddum type inequality or relation. The Nordhaus-Gaddum type inequalities for connectivity have been studied by several authors. For a bipartite graph [Formula: see text] with bipartition ([Formula: see text]), its bipartite complementary graph [Formula: see text] is a bipartite graph with [Formula: see text] and [Formula: see text] and [Formula: see text]. In this paper, we obtain the Nordhaus-Gaddum type inequalities for connectivity of bipartite graphs and its bipartite complementary graphs. Furthermore, we prove that these inequalities are best possible.\",\"PeriodicalId\":422436,\"journal\":{\"name\":\"Parallel Process. Lett.\",\"volume\":\"103 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Parallel Process. Lett.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0129626420400058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parallel Process. Lett.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0129626420400058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

1956年,Nordhaus和Gaddum根据图的阶,给出了图的色数与补的和与积的下界和上界。此后,图[公式:见文]中的一个不变量与[公式:见文]的补[公式:见文]中的同一个不变量的和和/或积的任何界称为诺德豪斯-加德姆型不等式或关系。关于连通性的Nordhaus-Gaddum型不等式已经被一些作者研究过。对于具有双分([公式:见文])的二部图[公式:见文],其二部互补图[公式:见文]是具有[公式:见文]、[公式:见文]和[公式:见文]的二部图。本文得到了二部图及其二部补图的连通性的Nordhaus-Gaddum型不等式。进一步,我们证明了这些不等式是最佳可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Connectivity of a Bipartite Graph and Its Bipartite Complementary Graph
In 1956, Nordhaus and Gaddum gave lower and upper bounds on the sum and the product of the chromatic number of a graph and its complement, in terms of the order of the graph. Since then, any bound on the sum and/or the product of an invariant in a graph [Formula: see text] and the same invariant in the complement [Formula: see text] of [Formula: see text] is called a Nordhaus-Gaddum type inequality or relation. The Nordhaus-Gaddum type inequalities for connectivity have been studied by several authors. For a bipartite graph [Formula: see text] with bipartition ([Formula: see text]), its bipartite complementary graph [Formula: see text] is a bipartite graph with [Formula: see text] and [Formula: see text] and [Formula: see text]. In this paper, we obtain the Nordhaus-Gaddum type inequalities for connectivity of bipartite graphs and its bipartite complementary graphs. Furthermore, we prove that these inequalities are best possible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信