基于骨骼的图形卷积网络(GCN)活动识别研究综述

Mesafint Fanuel, Xiaohong Yuan, Hyung Nam Kim, L. Qingge, K. Roy
{"title":"基于骨骼的图形卷积网络(GCN)活动识别研究综述","authors":"Mesafint Fanuel, Xiaohong Yuan, Hyung Nam Kim, L. Qingge, K. Roy","doi":"10.1109/ISPA52656.2021.9552064","DOIUrl":null,"url":null,"abstract":"Skeleton-Based Activity recognition is an active research topic in Computer Vision. In recent years, deep learning methods have been used in this area, including Recurrent Neural Network (RNN)-based, Convolutional Neural Network (CNN)-based and Graph Convolutional Network (GCN)-based approaches. This paper provides a survey of recent work on various Graph Convolutional Network (GCN)-based approaches being applied to Skeleton-Based Activity Recognition. We first introduce the conventional implementation of a GCN. Then methods that address the limitations of conventional GCN's are presented.","PeriodicalId":131088,"journal":{"name":"2021 12th International Symposium on Image and Signal Processing and Analysis (ISPA)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Survey on Skeleton-Based Activity Recognition using Graph Convolutional Networks (GCN)\",\"authors\":\"Mesafint Fanuel, Xiaohong Yuan, Hyung Nam Kim, L. Qingge, K. Roy\",\"doi\":\"10.1109/ISPA52656.2021.9552064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Skeleton-Based Activity recognition is an active research topic in Computer Vision. In recent years, deep learning methods have been used in this area, including Recurrent Neural Network (RNN)-based, Convolutional Neural Network (CNN)-based and Graph Convolutional Network (GCN)-based approaches. This paper provides a survey of recent work on various Graph Convolutional Network (GCN)-based approaches being applied to Skeleton-Based Activity Recognition. We first introduce the conventional implementation of a GCN. Then methods that address the limitations of conventional GCN's are presented.\",\"PeriodicalId\":131088,\"journal\":{\"name\":\"2021 12th International Symposium on Image and Signal Processing and Analysis (ISPA)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 12th International Symposium on Image and Signal Processing and Analysis (ISPA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPA52656.2021.9552064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 12th International Symposium on Image and Signal Processing and Analysis (ISPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPA52656.2021.9552064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

基于骨骼的活动识别是计算机视觉领域的一个研究热点。近年来,深度学习方法被用于该领域,包括基于递归神经网络(RNN)、基于卷积神经网络(CNN)和基于图卷积网络(GCN)的方法。本文提供了各种基于图卷积网络(GCN)的方法应用于基于骨骼的活动识别的最新工作的调查。我们首先介绍GCN的常规实现。然后提出了解决传统GCN的局限性的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Survey on Skeleton-Based Activity Recognition using Graph Convolutional Networks (GCN)
Skeleton-Based Activity recognition is an active research topic in Computer Vision. In recent years, deep learning methods have been used in this area, including Recurrent Neural Network (RNN)-based, Convolutional Neural Network (CNN)-based and Graph Convolutional Network (GCN)-based approaches. This paper provides a survey of recent work on various Graph Convolutional Network (GCN)-based approaches being applied to Skeleton-Based Activity Recognition. We first introduce the conventional implementation of a GCN. Then methods that address the limitations of conventional GCN's are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信