考虑猎物感染的离散分数阶生态流行病学模型研究

Shuvojit Mondal, Xianbing Cao, N. Bairagi
{"title":"考虑猎物感染的离散分数阶生态流行病学模型研究","authors":"Shuvojit Mondal, Xianbing Cao, N. Bairagi","doi":"10.7153/fdc-2020-10-07","DOIUrl":null,"url":null,"abstract":". In this paper, an attempt is made to understand the dynamics of a three-dimensional discrete fractional-order eco-epidemiological model with Holling type II functional response. We fi rst discretize a fractional-order predator-prey-parasite system with piecewise constant ar- guments and then explore the system dynamics. Analytical conditions for the local stability of different fi xed points have been determined using the Jury criterion. Several examples are given to substantiate the analytical results. Our analysis shows that stability of the discrete fractional order system strongly depends on the step-size and the fractional order. More speci fi cally, the critical value of the step-size, where the switching of stability occurs, decreases as the order of the fractional derivative decreases. Simulation results explore that the discrete fractional-order system may also exhibit complex dynamics, like chaos, for higher step-size.","PeriodicalId":135809,"journal":{"name":"Fractional Differential Calculus","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of a discretized fractional-order eco-epidemiological model with prey infection\",\"authors\":\"Shuvojit Mondal, Xianbing Cao, N. Bairagi\",\"doi\":\"10.7153/fdc-2020-10-07\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this paper, an attempt is made to understand the dynamics of a three-dimensional discrete fractional-order eco-epidemiological model with Holling type II functional response. We fi rst discretize a fractional-order predator-prey-parasite system with piecewise constant ar- guments and then explore the system dynamics. Analytical conditions for the local stability of different fi xed points have been determined using the Jury criterion. Several examples are given to substantiate the analytical results. Our analysis shows that stability of the discrete fractional order system strongly depends on the step-size and the fractional order. More speci fi cally, the critical value of the step-size, where the switching of stability occurs, decreases as the order of the fractional derivative decreases. Simulation results explore that the discrete fractional-order system may also exhibit complex dynamics, like chaos, for higher step-size.\",\"PeriodicalId\":135809,\"journal\":{\"name\":\"Fractional Differential Calculus\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractional Differential Calculus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7153/fdc-2020-10-07\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Differential Calculus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/fdc-2020-10-07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

. 本文试图理解具有Holling II型功能响应的三维离散分数阶生态流行病学模型的动力学。首先对一个分段常数参数的分数阶捕食者-被捕食者-寄生虫系统进行离散化,然后探讨系统动力学。利用Jury准则确定了不同不动点的局部稳定性的分析条件。给出了几个实例来证实分析结果。我们的分析表明,离散分数阶系统的稳定性强烈地依赖于步长和分数阶。更具体地说,发生稳定性切换的步长临界值随着分数阶导数阶数的减小而减小。仿真结果表明,对于较高的步长,离散分数阶系统也可能表现出复杂的动力学,如混沌。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study of a discretized fractional-order eco-epidemiological model with prey infection
. In this paper, an attempt is made to understand the dynamics of a three-dimensional discrete fractional-order eco-epidemiological model with Holling type II functional response. We fi rst discretize a fractional-order predator-prey-parasite system with piecewise constant ar- guments and then explore the system dynamics. Analytical conditions for the local stability of different fi xed points have been determined using the Jury criterion. Several examples are given to substantiate the analytical results. Our analysis shows that stability of the discrete fractional order system strongly depends on the step-size and the fractional order. More speci fi cally, the critical value of the step-size, where the switching of stability occurs, decreases as the order of the fractional derivative decreases. Simulation results explore that the discrete fractional-order system may also exhibit complex dynamics, like chaos, for higher step-size.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信