时滞非自治脉冲微分系统的一致稳定性

Huamin Wang, Shukai Duan, Chuandong Li, Lidan Wang
{"title":"时滞非自治脉冲微分系统的一致稳定性","authors":"Huamin Wang, Shukai Duan, Chuandong Li, Lidan Wang","doi":"10.1109/ICICIP.2015.7388187","DOIUrl":null,"url":null,"abstract":"This paper deals with the stability problems of nonautonomous impulsive differential systems with time-delay. By utilizing the method of mathematic induction, proofs by contradiction and Lyapunov-Krasovskii functional, we obtain several uniformly stable criteria about the linear and nonlinear nonautonomous impulsive systems with time delay. One numerical example and its simulations are given to illustrate the effectiveness of the theoretical result.","PeriodicalId":265426,"journal":{"name":"2015 Sixth International Conference on Intelligent Control and Information Processing (ICICIP)","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uniform stability of nonautonomous impulsive differential systems with time delay\",\"authors\":\"Huamin Wang, Shukai Duan, Chuandong Li, Lidan Wang\",\"doi\":\"10.1109/ICICIP.2015.7388187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the stability problems of nonautonomous impulsive differential systems with time-delay. By utilizing the method of mathematic induction, proofs by contradiction and Lyapunov-Krasovskii functional, we obtain several uniformly stable criteria about the linear and nonlinear nonautonomous impulsive systems with time delay. One numerical example and its simulations are given to illustrate the effectiveness of the theoretical result.\",\"PeriodicalId\":265426,\"journal\":{\"name\":\"2015 Sixth International Conference on Intelligent Control and Information Processing (ICICIP)\",\"volume\":\"101 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Sixth International Conference on Intelligent Control and Information Processing (ICICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICIP.2015.7388187\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Sixth International Conference on Intelligent Control and Information Processing (ICICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP.2015.7388187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究具有时滞的非自治脉冲微分系统的稳定性问题。利用数学归纳法、矛盾法和Lyapunov-Krasovskii泛函,得到了线性和非线性时滞非自治脉冲系统的几个一致稳定判据。最后给出了一个数值算例和仿真,验证了理论结果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uniform stability of nonautonomous impulsive differential systems with time delay
This paper deals with the stability problems of nonautonomous impulsive differential systems with time-delay. By utilizing the method of mathematic induction, proofs by contradiction and Lyapunov-Krasovskii functional, we obtain several uniformly stable criteria about the linear and nonlinear nonautonomous impulsive systems with time delay. One numerical example and its simulations are given to illustrate the effectiveness of the theoretical result.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信