使用压缩稀疏函数的高效数据收集

Liwen Xu, Xiao Qi, Yuexuan Wang, T. Moscibroda
{"title":"使用压缩稀疏函数的高效数据收集","authors":"Liwen Xu, Xiao Qi, Yuexuan Wang, T. Moscibroda","doi":"10.1109/INFCOM.2013.6566785","DOIUrl":null,"url":null,"abstract":"Data gathering is one of the core algorithmic and theoretic problems in wireless sensor networks. In this paper, we propose a novel approach - Compressed Sparse Functions - to efficiently gather data through the use of highly sophisticated Compressive Sensing techniques. The idea of CSF is to gather a compressed version of a satisfying function (containing all the data) under a suitable function base, and to finally recover the original data. We show through theoretical analysis that our scheme significantly outperforms state-of-the-art methods in terms of efficiency, while matching them in terms of accuracy. For example, in a binary tree-structured network of n nodes, our solution reduces the number of packets from the best-known O(kn log n) to O(k log2 n), where k is a parameter depending on the correlation of the underlying sensor data. Finally, we provide simulations showing that our solution can save up to 80% of communication overhead in a 100-node network. Extensive simulations further show that our solution is robust, high-capacity and low-delay.","PeriodicalId":206346,"journal":{"name":"2013 Proceedings IEEE INFOCOM","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Efficient data gathering using Compressed Sparse Functions\",\"authors\":\"Liwen Xu, Xiao Qi, Yuexuan Wang, T. Moscibroda\",\"doi\":\"10.1109/INFCOM.2013.6566785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data gathering is one of the core algorithmic and theoretic problems in wireless sensor networks. In this paper, we propose a novel approach - Compressed Sparse Functions - to efficiently gather data through the use of highly sophisticated Compressive Sensing techniques. The idea of CSF is to gather a compressed version of a satisfying function (containing all the data) under a suitable function base, and to finally recover the original data. We show through theoretical analysis that our scheme significantly outperforms state-of-the-art methods in terms of efficiency, while matching them in terms of accuracy. For example, in a binary tree-structured network of n nodes, our solution reduces the number of packets from the best-known O(kn log n) to O(k log2 n), where k is a parameter depending on the correlation of the underlying sensor data. Finally, we provide simulations showing that our solution can save up to 80% of communication overhead in a 100-node network. Extensive simulations further show that our solution is robust, high-capacity and low-delay.\",\"PeriodicalId\":206346,\"journal\":{\"name\":\"2013 Proceedings IEEE INFOCOM\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Proceedings IEEE INFOCOM\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFCOM.2013.6566785\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Proceedings IEEE INFOCOM","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFCOM.2013.6566785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

数据采集是无线传感器网络的核心算法和理论问题之一。在本文中,我们提出了一种新颖的方法-压缩稀疏函数-通过使用高度复杂的压缩感知技术来有效地收集数据。CSF的思想是在合适的函数库下收集一个满意的函数(包含所有数据)的压缩版本,最终恢复原始数据。我们通过理论分析表明,我们的方案在效率方面显着优于最先进的方法,同时在准确性方面与其相匹配。例如,在n个节点的二叉树结构网络中,我们的解决方案将数据包的数量从最著名的O(kn log n)减少到O(k log2 n),其中k是一个参数,取决于底层传感器数据的相关性。最后,我们提供的模拟表明,我们的解决方案可以在100个节点的网络中节省高达80%的通信开销。大量的仿真进一步证明了我们的方案具有鲁棒性、高容量和低延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient data gathering using Compressed Sparse Functions
Data gathering is one of the core algorithmic and theoretic problems in wireless sensor networks. In this paper, we propose a novel approach - Compressed Sparse Functions - to efficiently gather data through the use of highly sophisticated Compressive Sensing techniques. The idea of CSF is to gather a compressed version of a satisfying function (containing all the data) under a suitable function base, and to finally recover the original data. We show through theoretical analysis that our scheme significantly outperforms state-of-the-art methods in terms of efficiency, while matching them in terms of accuracy. For example, in a binary tree-structured network of n nodes, our solution reduces the number of packets from the best-known O(kn log n) to O(k log2 n), where k is a parameter depending on the correlation of the underlying sensor data. Finally, we provide simulations showing that our solution can save up to 80% of communication overhead in a 100-node network. Extensive simulations further show that our solution is robust, high-capacity and low-delay.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信