线性椭圆算子逆的有限元逼近的收敛性

T. Kinoshita, Yoshitaka Watanabe, M. Nakao
{"title":"线性椭圆算子逆的有限元逼近的收敛性","authors":"T. Kinoshita, Yoshitaka Watanabe, M. Nakao","doi":"10.14232/actacyb.294906","DOIUrl":null,"url":null,"abstract":"This paper deals with convergence theorems of the Galerkin finite element approximation for the second-order elliptic boundary value problems. Under some quite general settings, we show not only the pointwise convergence but also prove that the norm of approximate operator converges to the corresponding norm for the inverse of a linear elliptic operator. Since the approximate norm estimates of linearized inverse operator play an essential role in the numerical verification method of solutions for non-linear elliptic problems, our result is also important in terms of guaranteeing its validity. Furthermore, the present method can also be applied to more general elliptic problems, e.g., biharmonic problems and so on.","PeriodicalId":187125,"journal":{"name":"Acta Cybern.","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Some Convergence Properties for Finite Element Approximations to the Inverse of Linear Elliptic Operators\",\"authors\":\"T. Kinoshita, Yoshitaka Watanabe, M. Nakao\",\"doi\":\"10.14232/actacyb.294906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with convergence theorems of the Galerkin finite element approximation for the second-order elliptic boundary value problems. Under some quite general settings, we show not only the pointwise convergence but also prove that the norm of approximate operator converges to the corresponding norm for the inverse of a linear elliptic operator. Since the approximate norm estimates of linearized inverse operator play an essential role in the numerical verification method of solutions for non-linear elliptic problems, our result is also important in terms of guaranteeing its validity. Furthermore, the present method can also be applied to more general elliptic problems, e.g., biharmonic problems and so on.\",\"PeriodicalId\":187125,\"journal\":{\"name\":\"Acta Cybern.\",\"volume\":\"108 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Cybern.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14232/actacyb.294906\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Cybern.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14232/actacyb.294906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究二阶椭圆型边值问题的Galerkin有限元逼近的收敛性定理。在一些相当一般的情况下,我们不仅证明了近似算子的点向收敛性,而且证明了近似算子的范数收敛于线性椭圆算子的逆的相应范数。由于线性化逆算子的近似范数估计在非线性椭圆问题解的数值验证方法中起着至关重要的作用,因此我们的结果对于保证其有效性也很重要。此外,该方法还可应用于更一般的椭圆型问题,如双调和问题等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Some Convergence Properties for Finite Element Approximations to the Inverse of Linear Elliptic Operators
This paper deals with convergence theorems of the Galerkin finite element approximation for the second-order elliptic boundary value problems. Under some quite general settings, we show not only the pointwise convergence but also prove that the norm of approximate operator converges to the corresponding norm for the inverse of a linear elliptic operator. Since the approximate norm estimates of linearized inverse operator play an essential role in the numerical verification method of solutions for non-linear elliptic problems, our result is also important in terms of guaranteeing its validity. Furthermore, the present method can also be applied to more general elliptic problems, e.g., biharmonic problems and so on.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信