大型数据集决策树的并行生成算法

Anilu Franco-Arcega, J. S. Cansino, Linda Gladiola Flores-Flores
{"title":"大型数据集决策树的并行生成算法","authors":"Anilu Franco-Arcega, J. S. Cansino, Linda Gladiola Flores-Flores","doi":"10.1109/ICAT.2013.6684045","DOIUrl":null,"url":null,"abstract":"This paper introduces a new parallel algorithm called ParDTLT and discusses some of its advantages with respect to a set of well known sequential and parallel algorithms. The parallel process occurs in every node in the decision tree, which is constructed during the supervised training phase. The basis of the distribution of a parallel task is on the attributes of the training objects and the growing of the tree is based on two criteria, who are defined by the maximum number of training objects that every node can support and an entropic gain ratio criterion. Different experiments have been made to compare the behavior of the parallel algorithm ParDTLT with the behavior of the sequential algorithms C4.5, VFDT, YaDT and DTLT and with the parallel algorithm called Synchronous. The experimental results show that ParDTLT keeps the quality of classification and it reduces the execution time.","PeriodicalId":348701,"journal":{"name":"2013 XXIV International Conference on Information, Communication and Automation Technologies (ICAT)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A parallel algorithm to induce decision trees for large datasets\",\"authors\":\"Anilu Franco-Arcega, J. S. Cansino, Linda Gladiola Flores-Flores\",\"doi\":\"10.1109/ICAT.2013.6684045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a new parallel algorithm called ParDTLT and discusses some of its advantages with respect to a set of well known sequential and parallel algorithms. The parallel process occurs in every node in the decision tree, which is constructed during the supervised training phase. The basis of the distribution of a parallel task is on the attributes of the training objects and the growing of the tree is based on two criteria, who are defined by the maximum number of training objects that every node can support and an entropic gain ratio criterion. Different experiments have been made to compare the behavior of the parallel algorithm ParDTLT with the behavior of the sequential algorithms C4.5, VFDT, YaDT and DTLT and with the parallel algorithm called Synchronous. The experimental results show that ParDTLT keeps the quality of classification and it reduces the execution time.\",\"PeriodicalId\":348701,\"journal\":{\"name\":\"2013 XXIV International Conference on Information, Communication and Automation Technologies (ICAT)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 XXIV International Conference on Information, Communication and Automation Technologies (ICAT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAT.2013.6684045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 XXIV International Conference on Information, Communication and Automation Technologies (ICAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAT.2013.6684045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文介绍了一种新的并行算法,称为ParDTLT,并讨论了它相对于一组众所周知的顺序和并行算法的一些优点。并行过程发生在决策树的每个节点上,决策树是在监督训练阶段构建的。并行任务的分布以训练对象的属性为基础,树的生长基于两个准则,即每个节点可以支持的最大训练对象数和熵增益比准则。将并行算法ParDTLT的行为与顺序算法C4.5、VFDT、YaDT和DTLT的行为以及并行算法Synchronous进行了不同的实验比较。实验结果表明,该方法在保持分类质量的同时减少了执行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A parallel algorithm to induce decision trees for large datasets
This paper introduces a new parallel algorithm called ParDTLT and discusses some of its advantages with respect to a set of well known sequential and parallel algorithms. The parallel process occurs in every node in the decision tree, which is constructed during the supervised training phase. The basis of the distribution of a parallel task is on the attributes of the training objects and the growing of the tree is based on two criteria, who are defined by the maximum number of training objects that every node can support and an entropic gain ratio criterion. Different experiments have been made to compare the behavior of the parallel algorithm ParDTLT with the behavior of the sequential algorithms C4.5, VFDT, YaDT and DTLT and with the parallel algorithm called Synchronous. The experimental results show that ParDTLT keeps the quality of classification and it reduces the execution time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信