一种用于在衰落信道上同时进行语音和数据传输的自适应调制方案

Mohamed-Slim Alouini, X. Tang, A. Goldsmith
{"title":"一种用于在衰落信道上同时进行语音和数据传输的自适应调制方案","authors":"Mohamed-Slim Alouini, X. Tang, A. Goldsmith","doi":"10.1109/VETEC.1998.686378","DOIUrl":null,"url":null,"abstract":"We propose a new adaptive modulation technique for simultaneous voice and data transmission over fading channels, and study its performance. The proposed scheme takes advantage of the time-varying nature of fading to dynamically allocate the transmitted power between the inphase (I) and quadrature (Q) channels. It uses fixed-rate binary phase shift keying (BPSK) modulation on the Q channel for voice, and variable-rate M-ary amplitude modulation (M-AM) on the I channel for data. For favorable channel conditions most of the power is allocated to high rate data transmission on the I channel. The remaining power is used to support the variable-power voice transmission on the Q channel. As the channel degrades the modulation gradually reduces its data throughput and reallocates most of its available power to insure a continuous and satisfactory voice transmission. The scheme is intended to provide a high average spectral efficiency for data communications while meeting the stringent delay requirements imposed by voice. We present closed-form expressions as well as numerical and simulation results for the outage probability, average allocated power, achievable spectral efficiency, and average bit-error-rate for both voice and data, transmission over Nakagami-m (1960) fading channels. We also discuss the features and advantages of the proposed scheme.","PeriodicalId":335954,"journal":{"name":"VTC '98. 48th IEEE Vehicular Technology Conference. Pathway to Global Wireless Revolution (Cat. No.98CH36151)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"160","resultStr":"{\"title\":\"An adaptive modulation scheme for simultaneous voice and data transmission over fading channels\",\"authors\":\"Mohamed-Slim Alouini, X. Tang, A. Goldsmith\",\"doi\":\"10.1109/VETEC.1998.686378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new adaptive modulation technique for simultaneous voice and data transmission over fading channels, and study its performance. The proposed scheme takes advantage of the time-varying nature of fading to dynamically allocate the transmitted power between the inphase (I) and quadrature (Q) channels. It uses fixed-rate binary phase shift keying (BPSK) modulation on the Q channel for voice, and variable-rate M-ary amplitude modulation (M-AM) on the I channel for data. For favorable channel conditions most of the power is allocated to high rate data transmission on the I channel. The remaining power is used to support the variable-power voice transmission on the Q channel. As the channel degrades the modulation gradually reduces its data throughput and reallocates most of its available power to insure a continuous and satisfactory voice transmission. The scheme is intended to provide a high average spectral efficiency for data communications while meeting the stringent delay requirements imposed by voice. We present closed-form expressions as well as numerical and simulation results for the outage probability, average allocated power, achievable spectral efficiency, and average bit-error-rate for both voice and data, transmission over Nakagami-m (1960) fading channels. We also discuss the features and advantages of the proposed scheme.\",\"PeriodicalId\":335954,\"journal\":{\"name\":\"VTC '98. 48th IEEE Vehicular Technology Conference. Pathway to Global Wireless Revolution (Cat. No.98CH36151)\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"160\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"VTC '98. 48th IEEE Vehicular Technology Conference. Pathway to Global Wireless Revolution (Cat. No.98CH36151)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VETEC.1998.686378\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"VTC '98. 48th IEEE Vehicular Technology Conference. Pathway to Global Wireless Revolution (Cat. No.98CH36151)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VETEC.1998.686378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 160

摘要

提出了一种新的自适应调制技术,用于在衰落信道中同时传输语音和数据,并对其性能进行了研究。该方案利用衰落的时变特性在相位信道(I)和正交信道(Q)之间动态分配传输功率。它在Q信道上使用固定速率二进制相移键控(BPSK)调制用于语音,在I信道上使用可变速率M-ary幅度调制(M-AM)用于数据。对于有利的信道条件,大部分功率分配给I信道上的高速率数据传输。剩余功率用于支持Q通道的可变功率语音传输。随着信道的退化,调制逐渐降低其数据吞吐量,并重新分配其大部分可用功率,以确保连续和令人满意的语音传输。该方案旨在为数据通信提供较高的平均频谱效率,同时满足语音对延迟的严格要求。我们给出了在Nakagami-m(1960)衰落信道上传输语音和数据的停机概率、平均分配功率、可实现的频谱效率和平均误码率的封闭表达式以及数值和模拟结果。讨论了该方案的特点和优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An adaptive modulation scheme for simultaneous voice and data transmission over fading channels
We propose a new adaptive modulation technique for simultaneous voice and data transmission over fading channels, and study its performance. The proposed scheme takes advantage of the time-varying nature of fading to dynamically allocate the transmitted power between the inphase (I) and quadrature (Q) channels. It uses fixed-rate binary phase shift keying (BPSK) modulation on the Q channel for voice, and variable-rate M-ary amplitude modulation (M-AM) on the I channel for data. For favorable channel conditions most of the power is allocated to high rate data transmission on the I channel. The remaining power is used to support the variable-power voice transmission on the Q channel. As the channel degrades the modulation gradually reduces its data throughput and reallocates most of its available power to insure a continuous and satisfactory voice transmission. The scheme is intended to provide a high average spectral efficiency for data communications while meeting the stringent delay requirements imposed by voice. We present closed-form expressions as well as numerical and simulation results for the outage probability, average allocated power, achievable spectral efficiency, and average bit-error-rate for both voice and data, transmission over Nakagami-m (1960) fading channels. We also discuss the features and advantages of the proposed scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信