双曲系统的自适应控制:一种CLF方法

J. M. Igreja, J. M. Lemos, R. N. Silva
{"title":"双曲系统的自适应控制:一种CLF方法","authors":"J. M. Igreja, J. M. Lemos, R. N. Silva","doi":"10.23919/ECC.2007.7068989","DOIUrl":null,"url":null,"abstract":"Adaptive nonlinear model based predictive control of distributed plants involving transport phenomena, described by hyperbolic partial differential equations are considered. The method proposed relies on a control Lyapunov function derived from Sontag's formula and in a stable observer and tackles directly the infinite dimension class of systems without finite dimension approximations. The control of plug flow nonlinear systems (a tubular heat exchanger, a distributed collector solar filed and a tubular reactor) are presented as examples to illustrate the method.","PeriodicalId":407048,"journal":{"name":"2007 European Control Conference (ECC)","volume":"177 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Adaptive control of hyperbolic systems: A CLF approach\",\"authors\":\"J. M. Igreja, J. M. Lemos, R. N. Silva\",\"doi\":\"10.23919/ECC.2007.7068989\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Adaptive nonlinear model based predictive control of distributed plants involving transport phenomena, described by hyperbolic partial differential equations are considered. The method proposed relies on a control Lyapunov function derived from Sontag's formula and in a stable observer and tackles directly the infinite dimension class of systems without finite dimension approximations. The control of plug flow nonlinear systems (a tubular heat exchanger, a distributed collector solar filed and a tubular reactor) are presented as examples to illustrate the method.\",\"PeriodicalId\":407048,\"journal\":{\"name\":\"2007 European Control Conference (ECC)\",\"volume\":\"177 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 European Control Conference (ECC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ECC.2007.7068989\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 European Control Conference (ECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ECC.2007.7068989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

研究了用双曲型偏微分方程描述的基于自适应非线性模型的分布式植物输运预测控制问题。该方法依赖于由Sontag公式导出的控制Lyapunov函数,并在稳定观测器中直接处理无有限维近似的无限维系统。以管式换热器、分布式集热器和管式反应器等塞流非线性系统的控制为例进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive control of hyperbolic systems: A CLF approach
Adaptive nonlinear model based predictive control of distributed plants involving transport phenomena, described by hyperbolic partial differential equations are considered. The method proposed relies on a control Lyapunov function derived from Sontag's formula and in a stable observer and tackles directly the infinite dimension class of systems without finite dimension approximations. The control of plug flow nonlinear systems (a tubular heat exchanger, a distributed collector solar filed and a tubular reactor) are presented as examples to illustrate the method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信