聊天机器人消息分类的双向LSTM模型

Nunthawat Lhasiw, Nuttapong Sanglerdsinlapachai, Tanatorn Tanantong
{"title":"聊天机器人消息分类的双向LSTM模型","authors":"Nunthawat Lhasiw, Nuttapong Sanglerdsinlapachai, Tanatorn Tanantong","doi":"10.1109/iSAI-NLP54397.2021.9678173","DOIUrl":null,"url":null,"abstract":"Online channels, e.g., Facebook Messenger and Line, are widely used especially in COVID-19 pandemic. To quickly respond to their customer, chatbot system are implemented in many companies or organizations, connected to those channels. The Office of Registrar, Thammasat University also implements a chatbot to answer questions from students. An important step in the chatbot system is to know an intention of a question message. A bidirectional LSTM model is employed to classify a question message from the chatbot system into five intention classes. The experimental results shows that the obtained model yields an accuracy of 0.80 on our validation dataset.","PeriodicalId":339826,"journal":{"name":"2021 16th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Bidirectional LSTM Model for Classifying Chatbot Messages\",\"authors\":\"Nunthawat Lhasiw, Nuttapong Sanglerdsinlapachai, Tanatorn Tanantong\",\"doi\":\"10.1109/iSAI-NLP54397.2021.9678173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Online channels, e.g., Facebook Messenger and Line, are widely used especially in COVID-19 pandemic. To quickly respond to their customer, chatbot system are implemented in many companies or organizations, connected to those channels. The Office of Registrar, Thammasat University also implements a chatbot to answer questions from students. An important step in the chatbot system is to know an intention of a question message. A bidirectional LSTM model is employed to classify a question message from the chatbot system into five intention classes. The experimental results shows that the obtained model yields an accuracy of 0.80 on our validation dataset.\",\"PeriodicalId\":339826,\"journal\":{\"name\":\"2021 16th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 16th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iSAI-NLP54397.2021.9678173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 16th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iSAI-NLP54397.2021.9678173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

特别是在新冠疫情期间,Facebook Messenger和Line等在线渠道被广泛使用。为了快速响应客户,许多公司或组织都实施了聊天机器人系统,连接到这些渠道。法政大学注册办公室也安装了一个聊天机器人来回答学生的问题。聊天机器人系统的一个重要步骤是了解问题信息的意图。利用双向LSTM模型将聊天机器人系统的问题信息划分为五个意向类。实验结果表明,该模型在验证数据集上的准确率为0.80。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Bidirectional LSTM Model for Classifying Chatbot Messages
Online channels, e.g., Facebook Messenger and Line, are widely used especially in COVID-19 pandemic. To quickly respond to their customer, chatbot system are implemented in many companies or organizations, connected to those channels. The Office of Registrar, Thammasat University also implements a chatbot to answer questions from students. An important step in the chatbot system is to know an intention of a question message. A bidirectional LSTM model is employed to classify a question message from the chatbot system into five intention classes. The experimental results shows that the obtained model yields an accuracy of 0.80 on our validation dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信