{"title":"基于高光谱数据的植被生物化学多任务学习","authors":"Utsav B. Gewali, S. Monteiro","doi":"10.1109/WHISPERS.2016.8071800","DOIUrl":null,"url":null,"abstract":"Statistical models have been successful in accurately estimating the biochemical contents of vegetation from the reflectance spectra. However, their performance deteriorates when there is a scarcity of sizable amount of ground truth data for modeling the complex nonlinear relationship occurring between the spectrum and the biochemical quantity. We propose a novel Gaussian process based multitask learning method for improving the prediction of a biochemical through the transfer of knowledge from the learned models for predicting related biochemicals. This method is most advantageous when there are few ground truth data for the biochemical of interest, but plenty of ground truth data for related biochemicals. The proposed multitask Gaussian process hypothesizes that the inter-relationship between the biochemical quantities is better modeled by using a combination of two or more covariance functions and inter-task correlation matrices. In the experiments, our method outperformed the current methods on two real-world datasets.","PeriodicalId":369281,"journal":{"name":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Multitask learning of vegetation biochemistry from hyperspectral data\",\"authors\":\"Utsav B. Gewali, S. Monteiro\",\"doi\":\"10.1109/WHISPERS.2016.8071800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Statistical models have been successful in accurately estimating the biochemical contents of vegetation from the reflectance spectra. However, their performance deteriorates when there is a scarcity of sizable amount of ground truth data for modeling the complex nonlinear relationship occurring between the spectrum and the biochemical quantity. We propose a novel Gaussian process based multitask learning method for improving the prediction of a biochemical through the transfer of knowledge from the learned models for predicting related biochemicals. This method is most advantageous when there are few ground truth data for the biochemical of interest, but plenty of ground truth data for related biochemicals. The proposed multitask Gaussian process hypothesizes that the inter-relationship between the biochemical quantities is better modeled by using a combination of two or more covariance functions and inter-task correlation matrices. In the experiments, our method outperformed the current methods on two real-world datasets.\",\"PeriodicalId\":369281,\"journal\":{\"name\":\"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WHISPERS.2016.8071800\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2016.8071800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multitask learning of vegetation biochemistry from hyperspectral data
Statistical models have been successful in accurately estimating the biochemical contents of vegetation from the reflectance spectra. However, their performance deteriorates when there is a scarcity of sizable amount of ground truth data for modeling the complex nonlinear relationship occurring between the spectrum and the biochemical quantity. We propose a novel Gaussian process based multitask learning method for improving the prediction of a biochemical through the transfer of knowledge from the learned models for predicting related biochemicals. This method is most advantageous when there are few ground truth data for the biochemical of interest, but plenty of ground truth data for related biochemicals. The proposed multitask Gaussian process hypothesizes that the inter-relationship between the biochemical quantities is better modeled by using a combination of two or more covariance functions and inter-task correlation matrices. In the experiments, our method outperformed the current methods on two real-world datasets.