{"title":"一种分散模糊控制器的设计","authors":"Z. Yeh","doi":"10.1109/FUZZY.1994.343723","DOIUrl":null,"url":null,"abstract":"Presents a systematic methodology to the design of a decentralized fuzzy logic controller for large-scale nonlinear systems. A new method which is based on a performance index of sliding mode control is used to derive fuzzy rules and an adaptive algorithm is used to eliminate the chattering phenomenon. The simulation results of a two-inverted pendulum system and a two-link manipulator demonstrate that the attractive features of the proposed approach include a smaller residual error and robustness against nonlinear interactions.<<ETX>>","PeriodicalId":153967,"journal":{"name":"Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A decentralized fuzzy logic controller design\",\"authors\":\"Z. Yeh\",\"doi\":\"10.1109/FUZZY.1994.343723\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Presents a systematic methodology to the design of a decentralized fuzzy logic controller for large-scale nonlinear systems. A new method which is based on a performance index of sliding mode control is used to derive fuzzy rules and an adaptive algorithm is used to eliminate the chattering phenomenon. The simulation results of a two-inverted pendulum system and a two-link manipulator demonstrate that the attractive features of the proposed approach include a smaller residual error and robustness against nonlinear interactions.<<ETX>>\",\"PeriodicalId\":153967,\"journal\":{\"name\":\"Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZY.1994.343723\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.1994.343723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Presents a systematic methodology to the design of a decentralized fuzzy logic controller for large-scale nonlinear systems. A new method which is based on a performance index of sliding mode control is used to derive fuzzy rules and an adaptive algorithm is used to eliminate the chattering phenomenon. The simulation results of a two-inverted pendulum system and a two-link manipulator demonstrate that the attractive features of the proposed approach include a smaller residual error and robustness against nonlinear interactions.<>