单图像超分辨率的矩阵值回归

Yi Tang, Hong Chen
{"title":"单图像超分辨率的矩阵值回归","authors":"Yi Tang, Hong Chen","doi":"10.1109/ICWAPR.2013.6599319","DOIUrl":null,"url":null,"abstract":"Single-image super-resolution is firstly treated as a problem of matrix-value regression. By using matrix-value regression techniques, some desired properties are found. Firstly, the matrix-value regression technique greatly promotes the efficiency of learning from image pairs. As a result, the matrix-value regression based super-resolution algorithm can be smoothly applied to big data setting. Secondly, the matrix-value regression technique makes it possible to design a patch-to-patch super-resolution algorithm. As far as we know, it is the first patch-to-patch algorithm in the field of single-image super-resolution. Experimental results have shown the efficiency of the matrix-value regression based super-resolution algorithm in the training process. Meanwhile, it is also shown that the performance of the proposed algorithm is competitive to most of state-of-the-art super-resolution algorithms.","PeriodicalId":236156,"journal":{"name":"2013 International Conference on Wavelet Analysis and Pattern Recognition","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Matrix-value regression for single-image super-resolution\",\"authors\":\"Yi Tang, Hong Chen\",\"doi\":\"10.1109/ICWAPR.2013.6599319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Single-image super-resolution is firstly treated as a problem of matrix-value regression. By using matrix-value regression techniques, some desired properties are found. Firstly, the matrix-value regression technique greatly promotes the efficiency of learning from image pairs. As a result, the matrix-value regression based super-resolution algorithm can be smoothly applied to big data setting. Secondly, the matrix-value regression technique makes it possible to design a patch-to-patch super-resolution algorithm. As far as we know, it is the first patch-to-patch algorithm in the field of single-image super-resolution. Experimental results have shown the efficiency of the matrix-value regression based super-resolution algorithm in the training process. Meanwhile, it is also shown that the performance of the proposed algorithm is competitive to most of state-of-the-art super-resolution algorithms.\",\"PeriodicalId\":236156,\"journal\":{\"name\":\"2013 International Conference on Wavelet Analysis and Pattern Recognition\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Wavelet Analysis and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICWAPR.2013.6599319\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Wavelet Analysis and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWAPR.2013.6599319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

首先将单图像超分辨率问题作为矩阵值回归问题进行处理。利用矩阵值回归技术,得到了一些理想的性质。首先,矩阵值回归技术极大地提高了图像对学习的效率。因此,基于矩阵值回归的超分辨率算法可以顺利地应用于大数据设置。其次,利用矩阵值回归技术,设计了一种补丁间的超分辨率算法。据我们所知,这是单图像超分辨率领域第一个patch-to-patch算法。实验结果表明,基于矩阵值回归的超分辨算法在训练过程中是有效的。与此同时,该算法的性能与大多数最先进的超分辨率算法相比具有竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Matrix-value regression for single-image super-resolution
Single-image super-resolution is firstly treated as a problem of matrix-value regression. By using matrix-value regression techniques, some desired properties are found. Firstly, the matrix-value regression technique greatly promotes the efficiency of learning from image pairs. As a result, the matrix-value regression based super-resolution algorithm can be smoothly applied to big data setting. Secondly, the matrix-value regression technique makes it possible to design a patch-to-patch super-resolution algorithm. As far as we know, it is the first patch-to-patch algorithm in the field of single-image super-resolution. Experimental results have shown the efficiency of the matrix-value regression based super-resolution algorithm in the training process. Meanwhile, it is also shown that the performance of the proposed algorithm is competitive to most of state-of-the-art super-resolution algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信