{"title":"防止档案系统中的罕见事件故障","authors":"Avani Wildani, T. Schwarz, E. L. Miller, D. Long","doi":"10.1109/MASCOT.2009.5366825","DOIUrl":null,"url":null,"abstract":"Digital archives are growing rapidly, necessitating stronger reliability measures than RAID to avoid data loss from device failure. Mirroring, a popular solution, is too expensive over time. We present a compromise solution that uses multi-level redundancy coding to reduce the probability of data loss from multiple simultaneous device failures. This approach handles small-scale failures of one or two devices efficiently while still allowing the system to survive rare-event, larger-scale failures of four or more devices. In our approach, each disk is split into a set of fixed size disklets which are used to construct reliability stripes. To protect against rare event failures, reliability stripes are grouped into larger super-groups, each of which has a corresponding super-parity; super-parity is only used to recover data when disk failures overwhelm the redundancy in a single reliability stripe. Super-parity can be stored on a variety of devices such as NV-RAM and always-on disks to offset write bottlenecks while still keeping the number of active devices low. Our calculations of failure probabilities show that adding super-parity allows our system to absorb many more disk failures without data loss. Through discrete event simulation, we found that adding super-groups has a significant impact on mean time to data loss and that rebuilds are slow but not unmanageable. Finally, we showed that robustness against rare events can be achieved for a fraction of total system cost.","PeriodicalId":275737,"journal":{"name":"2009 IEEE International Symposium on Modeling, Analysis & Simulation of Computer and Telecommunication Systems","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"Protecting against rare event failures in archival systems\",\"authors\":\"Avani Wildani, T. Schwarz, E. L. Miller, D. Long\",\"doi\":\"10.1109/MASCOT.2009.5366825\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Digital archives are growing rapidly, necessitating stronger reliability measures than RAID to avoid data loss from device failure. Mirroring, a popular solution, is too expensive over time. We present a compromise solution that uses multi-level redundancy coding to reduce the probability of data loss from multiple simultaneous device failures. This approach handles small-scale failures of one or two devices efficiently while still allowing the system to survive rare-event, larger-scale failures of four or more devices. In our approach, each disk is split into a set of fixed size disklets which are used to construct reliability stripes. To protect against rare event failures, reliability stripes are grouped into larger super-groups, each of which has a corresponding super-parity; super-parity is only used to recover data when disk failures overwhelm the redundancy in a single reliability stripe. Super-parity can be stored on a variety of devices such as NV-RAM and always-on disks to offset write bottlenecks while still keeping the number of active devices low. Our calculations of failure probabilities show that adding super-parity allows our system to absorb many more disk failures without data loss. Through discrete event simulation, we found that adding super-groups has a significant impact on mean time to data loss and that rebuilds are slow but not unmanageable. Finally, we showed that robustness against rare events can be achieved for a fraction of total system cost.\",\"PeriodicalId\":275737,\"journal\":{\"name\":\"2009 IEEE International Symposium on Modeling, Analysis & Simulation of Computer and Telecommunication Systems\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Symposium on Modeling, Analysis & Simulation of Computer and Telecommunication Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MASCOT.2009.5366825\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Symposium on Modeling, Analysis & Simulation of Computer and Telecommunication Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MASCOT.2009.5366825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Protecting against rare event failures in archival systems
Digital archives are growing rapidly, necessitating stronger reliability measures than RAID to avoid data loss from device failure. Mirroring, a popular solution, is too expensive over time. We present a compromise solution that uses multi-level redundancy coding to reduce the probability of data loss from multiple simultaneous device failures. This approach handles small-scale failures of one or two devices efficiently while still allowing the system to survive rare-event, larger-scale failures of four or more devices. In our approach, each disk is split into a set of fixed size disklets which are used to construct reliability stripes. To protect against rare event failures, reliability stripes are grouped into larger super-groups, each of which has a corresponding super-parity; super-parity is only used to recover data when disk failures overwhelm the redundancy in a single reliability stripe. Super-parity can be stored on a variety of devices such as NV-RAM and always-on disks to offset write bottlenecks while still keeping the number of active devices low. Our calculations of failure probabilities show that adding super-parity allows our system to absorb many more disk failures without data loss. Through discrete event simulation, we found that adding super-groups has a significant impact on mean time to data loss and that rebuilds are slow but not unmanageable. Finally, we showed that robustness against rare events can be achieved for a fraction of total system cost.