基于web双语新闻的自适应平行句挖掘

B. Zhao, S. Vogel
{"title":"基于web双语新闻的自适应平行句挖掘","authors":"B. Zhao, S. Vogel","doi":"10.1109/ICDM.2002.1184044","DOIUrl":null,"url":null,"abstract":"In this paper a robust, adaptive approach for mining parallel sentences from a bilingual comparable news collection is described Sentence length models and lexicon-based models are combined under a maximum likelihood criterion. Specific models are proposed to handle insertions and deletions that are frequent in bilingual data collected from the web. The proposed approach is adaptive, updating the translation lexicon iteratively using the mined parallel data to get better vocabulary coverage and translation probability parameter estimation. Experiments are carried out on 10 years of Xinhua bilingual news collection. Using the mined data, we get significant improvement in word-to-word alignment accuracy in machine translation modeling.","PeriodicalId":405340,"journal":{"name":"2002 IEEE International Conference on Data Mining, 2002. Proceedings.","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"132","resultStr":"{\"title\":\"Adaptive parallel sentences mining from web bilingual news collection\",\"authors\":\"B. Zhao, S. Vogel\",\"doi\":\"10.1109/ICDM.2002.1184044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a robust, adaptive approach for mining parallel sentences from a bilingual comparable news collection is described Sentence length models and lexicon-based models are combined under a maximum likelihood criterion. Specific models are proposed to handle insertions and deletions that are frequent in bilingual data collected from the web. The proposed approach is adaptive, updating the translation lexicon iteratively using the mined parallel data to get better vocabulary coverage and translation probability parameter estimation. Experiments are carried out on 10 years of Xinhua bilingual news collection. Using the mined data, we get significant improvement in word-to-word alignment accuracy in machine translation modeling.\",\"PeriodicalId\":405340,\"journal\":{\"name\":\"2002 IEEE International Conference on Data Mining, 2002. Proceedings.\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"132\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2002 IEEE International Conference on Data Mining, 2002. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2002.1184044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 IEEE International Conference on Data Mining, 2002. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2002.1184044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 132

摘要

本文描述了一种从双语可比新闻集合中挖掘平行句子的鲁棒自适应方法,该方法在最大似然准则下将句子长度模型和基于词典的模型相结合。提出了特定的模型来处理从网络上收集的双语数据中频繁出现的插入和删除。该方法是自适应的,利用挖掘的并行数据迭代更新翻译词典,以获得更好的词汇覆盖率和翻译概率参数估计。以新华社10年双语新闻采编为实验对象。利用挖掘的数据,我们显著提高了机器翻译建模的词对词对齐精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive parallel sentences mining from web bilingual news collection
In this paper a robust, adaptive approach for mining parallel sentences from a bilingual comparable news collection is described Sentence length models and lexicon-based models are combined under a maximum likelihood criterion. Specific models are proposed to handle insertions and deletions that are frequent in bilingual data collected from the web. The proposed approach is adaptive, updating the translation lexicon iteratively using the mined parallel data to get better vocabulary coverage and translation probability parameter estimation. Experiments are carried out on 10 years of Xinhua bilingual news collection. Using the mined data, we get significant improvement in word-to-word alignment accuracy in machine translation modeling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信