大脑变化的统计分析

O. Y. Chén, Duy Thanh Vu, Gilbert Greub, H. Cao, Xingru He, Yannick Muller, Constantinos Petrovas, H. Shou, Viet-Dung Nguyen, Bangdong Zhi, Laurent Perez, J. Raisaro, G. Nagels, M. Vos, Wei He, R. Gottardo, Palie Smart, M. Munafo, Giuseppe Pantaleo
{"title":"大脑变化的统计分析","authors":"O. Y. Chén, Duy Thanh Vu, Gilbert Greub, H. Cao, Xingru He, Yannick Muller, Constantinos Petrovas, H. Shou, Viet-Dung Nguyen, Bangdong Zhi, Laurent Perez, J. Raisaro, G. Nagels, M. Vos, Wei He, R. Gottardo, Palie Smart, M. Munafo, Giuseppe Pantaleo","doi":"10.1109/SSP53291.2023.10208029","DOIUrl":null,"url":null,"abstract":"We present here a systematical approach to studying the varying brain. We first distinguish different types of brain variability and provide examples for them. Next, we show classical analysis of covariance (ANCOVA) as well as advanced residual analysis via statistical- and deep-learning aim to decompose the total variance of the brain or behaviour data into explainable variance components. Additionally, we discuss innate and acquired brain variability. For varying big brain data, we define the neural law of large numbers and discuss methods for extracting representations from large-scale, potentially high-dimensional brain data. Finally, we examine the gut-brain axis, an often lurking, yet important, source of brain variability.","PeriodicalId":296346,"journal":{"name":"2023 IEEE Statistical Signal Processing Workshop (SSP)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Statistical Analysis of the Varying Brain\",\"authors\":\"O. Y. Chén, Duy Thanh Vu, Gilbert Greub, H. Cao, Xingru He, Yannick Muller, Constantinos Petrovas, H. Shou, Viet-Dung Nguyen, Bangdong Zhi, Laurent Perez, J. Raisaro, G. Nagels, M. Vos, Wei He, R. Gottardo, Palie Smart, M. Munafo, Giuseppe Pantaleo\",\"doi\":\"10.1109/SSP53291.2023.10208029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present here a systematical approach to studying the varying brain. We first distinguish different types of brain variability and provide examples for them. Next, we show classical analysis of covariance (ANCOVA) as well as advanced residual analysis via statistical- and deep-learning aim to decompose the total variance of the brain or behaviour data into explainable variance components. Additionally, we discuss innate and acquired brain variability. For varying big brain data, we define the neural law of large numbers and discuss methods for extracting representations from large-scale, potentially high-dimensional brain data. Finally, we examine the gut-brain axis, an often lurking, yet important, source of brain variability.\",\"PeriodicalId\":296346,\"journal\":{\"name\":\"2023 IEEE Statistical Signal Processing Workshop (SSP)\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Statistical Signal Processing Workshop (SSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSP53291.2023.10208029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP53291.2023.10208029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们在这里提出了一种系统的方法来研究大脑的变化。我们首先区分不同类型的大脑变异性,并为它们提供例子。接下来,我们展示了经典协方差分析(ANCOVA)以及通过统计和深度学习进行的高级残差分析,旨在将大脑或行为数据的总方差分解为可解释的方差成分。此外,我们还讨论了先天和后天的大脑变异。对于不同的大脑大数据,我们定义了大数的神经规律,并讨论了从大规模、潜在的高维大脑数据中提取表征的方法。最后,我们检查肠脑轴,这是一个经常潜伏的,但重要的,大脑变异性的来源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Statistical Analysis of the Varying Brain
We present here a systematical approach to studying the varying brain. We first distinguish different types of brain variability and provide examples for them. Next, we show classical analysis of covariance (ANCOVA) as well as advanced residual analysis via statistical- and deep-learning aim to decompose the total variance of the brain or behaviour data into explainable variance components. Additionally, we discuss innate and acquired brain variability. For varying big brain data, we define the neural law of large numbers and discuss methods for extracting representations from large-scale, potentially high-dimensional brain data. Finally, we examine the gut-brain axis, an often lurking, yet important, source of brain variability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信