基于tscc的输电线路故障SVR定位

P. Ray, D. Mishra, G. K. Budumuru
{"title":"基于tscc的输电线路故障SVR定位","authors":"P. Ray, D. Mishra, G. K. Budumuru","doi":"10.1109/ICIT.2016.061","DOIUrl":null,"url":null,"abstract":"In this paper we inspect support vector regression (SVR) based fault position in a TCSC (thyristor controlled series capacitor) based long transmission line. This technique uses 1 cycle post faulty current signal from the transmission line and decomposed by wavelet packet transform. From the decomposed signal entropy and energy are extracted and fed to the forward feature selection method to eliminate the redundant data set. Then optimal future data set is normalized. Taking different simulation situation like fault type, resistance path, inception angle, and distance train and test data are produced. By using particle swarm optimization technique SVR parameters are optimized. Then normalized data set is fed to SVR to locate the fault position in TCSC based long transmission line. It is noticed that fault position error is less, than 0.29 percentages.","PeriodicalId":220153,"journal":{"name":"2016 International Conference on Information Technology (ICIT)","volume":"204 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Location of the Fault in TCSC-based Transmission Line Using SVR\",\"authors\":\"P. Ray, D. Mishra, G. K. Budumuru\",\"doi\":\"10.1109/ICIT.2016.061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we inspect support vector regression (SVR) based fault position in a TCSC (thyristor controlled series capacitor) based long transmission line. This technique uses 1 cycle post faulty current signal from the transmission line and decomposed by wavelet packet transform. From the decomposed signal entropy and energy are extracted and fed to the forward feature selection method to eliminate the redundant data set. Then optimal future data set is normalized. Taking different simulation situation like fault type, resistance path, inception angle, and distance train and test data are produced. By using particle swarm optimization technique SVR parameters are optimized. Then normalized data set is fed to SVR to locate the fault position in TCSC based long transmission line. It is noticed that fault position error is less, than 0.29 percentages.\",\"PeriodicalId\":220153,\"journal\":{\"name\":\"2016 International Conference on Information Technology (ICIT)\",\"volume\":\"204 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Information Technology (ICIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIT.2016.061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Information Technology (ICIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT.2016.061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了基于支持向量回归(SVR)的长传输线故障定位方法。该技术利用输电线1周期后的故障电流信号,进行小波包分解。从分解后的信号中提取熵和能量,并将其输入到前向特征选择方法中去除了冗余数据集。然后对未来最优数据集进行归一化。在故障类型、电阻路径、起始角、距离等不同的仿真情况下,给出了仿真结果和试验数据。采用粒子群优化技术对支持向量机参数进行优化。然后将归一化后的数据集送入支持向量机进行故障定位。注意到故障位置误差小于0.29 %。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Location of the Fault in TCSC-based Transmission Line Using SVR
In this paper we inspect support vector regression (SVR) based fault position in a TCSC (thyristor controlled series capacitor) based long transmission line. This technique uses 1 cycle post faulty current signal from the transmission line and decomposed by wavelet packet transform. From the decomposed signal entropy and energy are extracted and fed to the forward feature selection method to eliminate the redundant data set. Then optimal future data set is normalized. Taking different simulation situation like fault type, resistance path, inception angle, and distance train and test data are produced. By using particle swarm optimization technique SVR parameters are optimized. Then normalized data set is fed to SVR to locate the fault position in TCSC based long transmission line. It is noticed that fault position error is less, than 0.29 percentages.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信