随机加权系数随机灰狼优化器(RGWO

Kartikeya Jaiswal, H. Mittal, Sonia Kukreja
{"title":"随机加权系数随机灰狼优化器(RGWO","authors":"Kartikeya Jaiswal, H. Mittal, Sonia Kukreja","doi":"10.1109/IC3.2017.8284355","DOIUrl":null,"url":null,"abstract":"Meta-heuristic algorithms are quiet widely used in engineering and science. In this paper, a novel variant of grey-wolf optimizer, randomized gray-wolf optimizer, is proposed where the effect of random coefficients of the best agents are taken into consideration. The proposed variant is tested on a set of 12 standard benchmark functions and compared with grey-wolf optimizer and particle swarm optimization on different dimensional search spaces. To statistically validate and analyse the convergence behaviour of variant, wilcoxon rank sum test along with convergence graphs over 30 runs is studied. The experimental study signify that the proposed variant not only enhances the performance but has comparable convergence rate, especially in case of multi-modal problems.","PeriodicalId":147099,"journal":{"name":"2017 Tenth International Conference on Contemporary Computing (IC3)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Randomized grey wolf optimizer (RGWO) with randomly weighted coefficients\",\"authors\":\"Kartikeya Jaiswal, H. Mittal, Sonia Kukreja\",\"doi\":\"10.1109/IC3.2017.8284355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Meta-heuristic algorithms are quiet widely used in engineering and science. In this paper, a novel variant of grey-wolf optimizer, randomized gray-wolf optimizer, is proposed where the effect of random coefficients of the best agents are taken into consideration. The proposed variant is tested on a set of 12 standard benchmark functions and compared with grey-wolf optimizer and particle swarm optimization on different dimensional search spaces. To statistically validate and analyse the convergence behaviour of variant, wilcoxon rank sum test along with convergence graphs over 30 runs is studied. The experimental study signify that the proposed variant not only enhances the performance but has comparable convergence rate, especially in case of multi-modal problems.\",\"PeriodicalId\":147099,\"journal\":{\"name\":\"2017 Tenth International Conference on Contemporary Computing (IC3)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Tenth International Conference on Contemporary Computing (IC3)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IC3.2017.8284355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Tenth International Conference on Contemporary Computing (IC3)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3.2017.8284355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

元启发式算法在工程和科学中得到了广泛的应用。本文提出了一种新的灰狼优化算法——随机灰狼优化算法,该算法考虑了最佳代理随机系数的影响。在12个标准基准函数上进行了测试,并与灰狼优化器和粒子群优化器在不同维度搜索空间上进行了比较。为了统计验证和分析变量的收敛行为,研究了30次以上的收敛图的wilcoxon秩和检验。实验研究表明,该算法不仅提高了算法性能,而且具有相当的收敛速度,特别是在多模态问题下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Randomized grey wolf optimizer (RGWO) with randomly weighted coefficients
Meta-heuristic algorithms are quiet widely used in engineering and science. In this paper, a novel variant of grey-wolf optimizer, randomized gray-wolf optimizer, is proposed where the effect of random coefficients of the best agents are taken into consideration. The proposed variant is tested on a set of 12 standard benchmark functions and compared with grey-wolf optimizer and particle swarm optimization on different dimensional search spaces. To statistically validate and analyse the convergence behaviour of variant, wilcoxon rank sum test along with convergence graphs over 30 runs is studied. The experimental study signify that the proposed variant not only enhances the performance but has comparable convergence rate, especially in case of multi-modal problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信