二维形状的扫描转录作为另一种神经形态概念

E. Greene, Yash J. Patel
{"title":"二维形状的扫描转录作为另一种神经形态概念","authors":"E. Greene, Yash J. Patel","doi":"10.36959/643/301","DOIUrl":null,"url":null,"abstract":"Selfridge, along with Sutherland and Marr provided some of the earliest proposals for how to program computers to recognize shapes. Their emphasis on filtering for contour features, especially the orientation of boundary segments, was reinforced by the Nobel Prize winning work of Hubel & Wiesel who discovered that neurons in primary visual cortex selectively respond as a function of contour orientation. Countless investigators and theorists have continued to build on this approach. These models are often described as neuromorphic, which implies that the computational methods are based on biologically plausible principles. Recent work from the present lab has challenged the emphasis on orientation selectivity and the use of neural network principles. The goal of the present report is not to relitigate those issues, but to provide an alternative concept for encoding of shape information that may be useful to neuromorphic modelers.","PeriodicalId":298664,"journal":{"name":"arXiv: Neurons and Cognition","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Scan transcription of two-dimensional shapes as an alternative neuromorphic concept\",\"authors\":\"E. Greene, Yash J. Patel\",\"doi\":\"10.36959/643/301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Selfridge, along with Sutherland and Marr provided some of the earliest proposals for how to program computers to recognize shapes. Their emphasis on filtering for contour features, especially the orientation of boundary segments, was reinforced by the Nobel Prize winning work of Hubel & Wiesel who discovered that neurons in primary visual cortex selectively respond as a function of contour orientation. Countless investigators and theorists have continued to build on this approach. These models are often described as neuromorphic, which implies that the computational methods are based on biologically plausible principles. Recent work from the present lab has challenged the emphasis on orientation selectivity and the use of neural network principles. The goal of the present report is not to relitigate those issues, but to provide an alternative concept for encoding of shape information that may be useful to neuromorphic modelers.\",\"PeriodicalId\":298664,\"journal\":{\"name\":\"arXiv: Neurons and Cognition\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Neurons and Cognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36959/643/301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Neurons and Cognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36959/643/301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

塞尔弗里奇与萨瑟兰和马尔一起,最早提出了一些关于如何通过编程让计算机识别形状的建议。他们强调对轮廓特征的过滤,特别是边界段的方向,这一点在诺贝尔奖获得者Hubel & Wiesel的研究中得到了加强,他们发现初级视觉皮层中的神经元选择性地响应轮廓方向的函数。无数的研究者和理论家继续在这种方法的基础上进行研究。这些模型通常被描述为神经形态的,这意味着计算方法是基于生物学上合理的原理。本实验室最近的工作对强调定向选择性和使用神经网络原理提出了挑战。本报告的目的不是重新讨论这些问题,而是提供一种可能对神经形态建模者有用的形状信息编码的替代概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scan transcription of two-dimensional shapes as an alternative neuromorphic concept
Selfridge, along with Sutherland and Marr provided some of the earliest proposals for how to program computers to recognize shapes. Their emphasis on filtering for contour features, especially the orientation of boundary segments, was reinforced by the Nobel Prize winning work of Hubel & Wiesel who discovered that neurons in primary visual cortex selectively respond as a function of contour orientation. Countless investigators and theorists have continued to build on this approach. These models are often described as neuromorphic, which implies that the computational methods are based on biologically plausible principles. Recent work from the present lab has challenged the emphasis on orientation selectivity and the use of neural network principles. The goal of the present report is not to relitigate those issues, but to provide an alternative concept for encoding of shape information that may be useful to neuromorphic modelers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信