{"title":"多状态系统的半马尔可夫建模与推理","authors":"V. Barbu, A. Karagrigoriou, A. Makrides","doi":"10.1109/SMRLO.2016.20","DOIUrl":null,"url":null,"abstract":"In this work we focus on multi state systems that we model by means of semi-Markov processes. The sojourn times are seen to be independent not identically distributed random variables and assumed to belong to a general class of distributions that includes several popular reliability distributions like the exponential, Weibull, and Pareto. We obtain maximum likelihood estimators of the parameters of interest and for various quantities related to the system under study.","PeriodicalId":254910,"journal":{"name":"2016 Second International Symposium on Stochastic Models in Reliability Engineering, Life Science and Operations Management (SMRLO)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On Semi-Markov Modelling and Inference for Multi-state Systems\",\"authors\":\"V. Barbu, A. Karagrigoriou, A. Makrides\",\"doi\":\"10.1109/SMRLO.2016.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we focus on multi state systems that we model by means of semi-Markov processes. The sojourn times are seen to be independent not identically distributed random variables and assumed to belong to a general class of distributions that includes several popular reliability distributions like the exponential, Weibull, and Pareto. We obtain maximum likelihood estimators of the parameters of interest and for various quantities related to the system under study.\",\"PeriodicalId\":254910,\"journal\":{\"name\":\"2016 Second International Symposium on Stochastic Models in Reliability Engineering, Life Science and Operations Management (SMRLO)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Second International Symposium on Stochastic Models in Reliability Engineering, Life Science and Operations Management (SMRLO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMRLO.2016.20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Second International Symposium on Stochastic Models in Reliability Engineering, Life Science and Operations Management (SMRLO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMRLO.2016.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On Semi-Markov Modelling and Inference for Multi-state Systems
In this work we focus on multi state systems that we model by means of semi-Markov processes. The sojourn times are seen to be independent not identically distributed random variables and assumed to belong to a general class of distributions that includes several popular reliability distributions like the exponential, Weibull, and Pareto. We obtain maximum likelihood estimators of the parameters of interest and for various quantities related to the system under study.