用于眼生物识别的多帧超分辨率

N. Reddy, Dewan Fahim Noor, Zhu Li, R. Derakhshani
{"title":"用于眼生物识别的多帧超分辨率","authors":"N. Reddy, Dewan Fahim Noor, Zhu Li, R. Derakhshani","doi":"10.1109/CVPRW.2018.00086","DOIUrl":null,"url":null,"abstract":"Some biometrics methods, especially ocular, may use fine spatial information akin to level-3 features. Examples include fine vascular patterns visible in the white of the eyes in green and blue channels, iridial patterns in near infrared, or minute periocular features in visible light. In some mobile applications, an NIR or RGB camera is used to capture these ocular images in a \"selfie\" like manner. However, most of such ocular images captured under unconstrained environments are of lower quality due to spatial resolution, noise, and motion blur, affecting the performance of the ensuing biometric authentication. Here we propose a multi-frame super resolution (MFSR) pipeline to mitigate the problem, where a higher resolution image is generated from multiple lower resolution, noisy and blurry images. We show that the proposed MFSR method at 2× upscaling can improve the equal error rate (EER) by 9.85% compared to single frame bicubic upscaling in RGB ocular matching while being up to 8.5× faster than comparable state-of-the-art MFSR method.","PeriodicalId":150600,"journal":{"name":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Multi-frame Super Resolution for Ocular Biometrics\",\"authors\":\"N. Reddy, Dewan Fahim Noor, Zhu Li, R. Derakhshani\",\"doi\":\"10.1109/CVPRW.2018.00086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Some biometrics methods, especially ocular, may use fine spatial information akin to level-3 features. Examples include fine vascular patterns visible in the white of the eyes in green and blue channels, iridial patterns in near infrared, or minute periocular features in visible light. In some mobile applications, an NIR or RGB camera is used to capture these ocular images in a \\\"selfie\\\" like manner. However, most of such ocular images captured under unconstrained environments are of lower quality due to spatial resolution, noise, and motion blur, affecting the performance of the ensuing biometric authentication. Here we propose a multi-frame super resolution (MFSR) pipeline to mitigate the problem, where a higher resolution image is generated from multiple lower resolution, noisy and blurry images. We show that the proposed MFSR method at 2× upscaling can improve the equal error rate (EER) by 9.85% compared to single frame bicubic upscaling in RGB ocular matching while being up to 8.5× faster than comparable state-of-the-art MFSR method.\",\"PeriodicalId\":150600,\"journal\":{\"name\":\"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW.2018.00086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2018.00086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

一些生物识别方法,尤其是眼识别方法,可以使用类似于3级特征的精细空间信息。例子包括在绿色和蓝色通道中可见的白色眼睛中的精细血管图案,近红外的虹膜图案,或可见光下微小的眼周特征。在一些移动应用程序中,使用近红外或RGB相机以“自拍”的方式捕捉这些眼部图像。然而,由于空间分辨率、噪声和运动模糊等因素,大多数在无约束环境下捕获的眼图像质量较低,影响了随后的生物识别认证的性能。在这里,我们提出了一个多帧超分辨率(MFSR)管道来缓解这个问题,其中由多个低分辨率,嘈杂和模糊的图像生成更高分辨率的图像。研究表明,在RGB眼匹配中,与单帧双三次上尺度相比,该方法在2倍上尺度下可将等误差率(EER)提高9.85%,同时比同类最先进的MFSR方法快8.5倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-frame Super Resolution for Ocular Biometrics
Some biometrics methods, especially ocular, may use fine spatial information akin to level-3 features. Examples include fine vascular patterns visible in the white of the eyes in green and blue channels, iridial patterns in near infrared, or minute periocular features in visible light. In some mobile applications, an NIR or RGB camera is used to capture these ocular images in a "selfie" like manner. However, most of such ocular images captured under unconstrained environments are of lower quality due to spatial resolution, noise, and motion blur, affecting the performance of the ensuing biometric authentication. Here we propose a multi-frame super resolution (MFSR) pipeline to mitigate the problem, where a higher resolution image is generated from multiple lower resolution, noisy and blurry images. We show that the proposed MFSR method at 2× upscaling can improve the equal error rate (EER) by 9.85% compared to single frame bicubic upscaling in RGB ocular matching while being up to 8.5× faster than comparable state-of-the-art MFSR method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信