基于快速LMS的MEG自适应噪声抑制

N. Ahmar, J. Simon
{"title":"基于快速LMS的MEG自适应噪声抑制","authors":"N. Ahmar, J. Simon","doi":"10.1109/CNE.2005.1419543","DOIUrl":null,"url":null,"abstract":"Magnetoencephalography (MEG) measures magnetic fields generated by electric currents in the brain, non-invasively and with millisecond temporal resolution. Typical signals are 10-13 T, so noise contamination due to external magnetic fields is a serious concern. Digital signal processing is typically required in addition to magnetic shielding. Using three reference channels, displaced from the head, to measure the noise, we apply adaptive filtering to subtract out estimates of the noise, via the block least-mean-square (\"fast LMS\") method. The algorithm is tested by its effects on the number and distribution of channels which have statistically significant signals (distinguishable from background noise at a specified false-positive rate). We show that fast LMS both increases the number significant channels and reduces the variance of false positives","PeriodicalId":113815,"journal":{"name":"Conference Proceedings. 2nd International IEEE EMBS Conference on Neural Engineering, 2005.","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"MEG Adaptive Noise Suppression using Fast LMS\",\"authors\":\"N. Ahmar, J. Simon\",\"doi\":\"10.1109/CNE.2005.1419543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnetoencephalography (MEG) measures magnetic fields generated by electric currents in the brain, non-invasively and with millisecond temporal resolution. Typical signals are 10-13 T, so noise contamination due to external magnetic fields is a serious concern. Digital signal processing is typically required in addition to magnetic shielding. Using three reference channels, displaced from the head, to measure the noise, we apply adaptive filtering to subtract out estimates of the noise, via the block least-mean-square (\\\"fast LMS\\\") method. The algorithm is tested by its effects on the number and distribution of channels which have statistically significant signals (distinguishable from background noise at a specified false-positive rate). We show that fast LMS both increases the number significant channels and reduces the variance of false positives\",\"PeriodicalId\":113815,\"journal\":{\"name\":\"Conference Proceedings. 2nd International IEEE EMBS Conference on Neural Engineering, 2005.\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Proceedings. 2nd International IEEE EMBS Conference on Neural Engineering, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CNE.2005.1419543\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Proceedings. 2nd International IEEE EMBS Conference on Neural Engineering, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNE.2005.1419543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

脑磁图(MEG)测量大脑中电流产生的磁场,非侵入性和毫秒级的时间分辨率。典型的信号是10-13 T,因此由于外部磁场的噪声污染是一个严重的问题。除磁屏蔽外,通常还需要数字信号处理。使用从头部位移的三个参考通道来测量噪声,我们通过块最小均方(“快速LMS”)方法应用自适应滤波来减去噪声的估计。该算法通过其对具有统计显著信号(在指定的假阳性率下与背景噪声区分)的信道数量和分布的影响进行了测试。我们表明,快速LMS既增加了有效通道的数量,又减少了误报的方差
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MEG Adaptive Noise Suppression using Fast LMS
Magnetoencephalography (MEG) measures magnetic fields generated by electric currents in the brain, non-invasively and with millisecond temporal resolution. Typical signals are 10-13 T, so noise contamination due to external magnetic fields is a serious concern. Digital signal processing is typically required in addition to magnetic shielding. Using three reference channels, displaced from the head, to measure the noise, we apply adaptive filtering to subtract out estimates of the noise, via the block least-mean-square ("fast LMS") method. The algorithm is tested by its effects on the number and distribution of channels which have statistically significant signals (distinguishable from background noise at a specified false-positive rate). We show that fast LMS both increases the number significant channels and reduces the variance of false positives
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信