Junchi Yan, Jian Liu, Yin Li, Zhibin Niu, Yuncai Liu
{"title":"基于秩稀疏度分解的视觉显著性检测","authors":"Junchi Yan, Jian Liu, Yin Li, Zhibin Niu, Yuncai Liu","doi":"10.1109/ICIP.2010.5652280","DOIUrl":null,"url":null,"abstract":"Saliency mechanism has been considered crucial in the human visual system and helpful to object detection and recognition. This paper addresses a novel feature-based model for visual saliency detection. It consists of two steps: first, using the learned overcomplete sparse bases to represent image patches; and then, estimating saliency information via direct low-rank and sparsity matrix decomposition. We compare our model with the previous methods on natural images. Experimental results show that our model performs competitively for visual saliency detection task, and suggest the potential application of matrix decomposition and convex optimization for image analysis.","PeriodicalId":228308,"journal":{"name":"2010 IEEE International Conference on Image Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"Visual saliency detection via rank-sparsity decomposition\",\"authors\":\"Junchi Yan, Jian Liu, Yin Li, Zhibin Niu, Yuncai Liu\",\"doi\":\"10.1109/ICIP.2010.5652280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Saliency mechanism has been considered crucial in the human visual system and helpful to object detection and recognition. This paper addresses a novel feature-based model for visual saliency detection. It consists of two steps: first, using the learned overcomplete sparse bases to represent image patches; and then, estimating saliency information via direct low-rank and sparsity matrix decomposition. We compare our model with the previous methods on natural images. Experimental results show that our model performs competitively for visual saliency detection task, and suggest the potential application of matrix decomposition and convex optimization for image analysis.\",\"PeriodicalId\":228308,\"journal\":{\"name\":\"2010 IEEE International Conference on Image Processing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2010.5652280\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2010.5652280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Visual saliency detection via rank-sparsity decomposition
Saliency mechanism has been considered crucial in the human visual system and helpful to object detection and recognition. This paper addresses a novel feature-based model for visual saliency detection. It consists of two steps: first, using the learned overcomplete sparse bases to represent image patches; and then, estimating saliency information via direct low-rank and sparsity matrix decomposition. We compare our model with the previous methods on natural images. Experimental results show that our model performs competitively for visual saliency detection task, and suggest the potential application of matrix decomposition and convex optimization for image analysis.