基于核函数的高光谱图像分类

J. M. Haut, Mercedes Eugenia Paoletti, R. Pastor-Vargas, L. Tobarra, A. Robles-Gómez, R. Hernandez, E.M.T. Hendrix, J. Li
{"title":"基于核函数的高光谱图像分类","authors":"J. M. Haut, Mercedes Eugenia Paoletti, R. Pastor-Vargas, L. Tobarra, A. Robles-Gómez, R. Hernandez, E.M.T. Hendrix, J. Li","doi":"10.1109/IGARSS47720.2021.9553134","DOIUrl":null,"url":null,"abstract":"Despite its great potential in a wide range of human activities, hyperspectral remote sensing imaging (HSI) exhibits several challenges that prevent full exploitation of its data. In particular, land-cover classification based on HSI data suffers significant degradation due to problematic data variability. Convolutional Neural Networks (CNNs) ability to extract spectral-spatial features has enabled the development of powerful classifiers, which achieve not yet seen accuracy results. To enhance the feature extraction procedure, this paper presents a novel HSI-CNN model (DKDCNet) which combines adaptive deforming kernels (DK) and convolutions (DC) with the aim of pinpointing the effective receptive field (ERF) on the challenging input data. Experimental results on the University of Houston benchmark show that DKDCNet is able to obtain a more accurate classification than traditional strategies with similar computational cost for HSI classification. Source code: https://github.com/mhaut/DKDCNet.","PeriodicalId":315312,"journal":{"name":"2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Adapting Kernels for Hyperspectral Image Classification\",\"authors\":\"J. M. Haut, Mercedes Eugenia Paoletti, R. Pastor-Vargas, L. Tobarra, A. Robles-Gómez, R. Hernandez, E.M.T. Hendrix, J. Li\",\"doi\":\"10.1109/IGARSS47720.2021.9553134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite its great potential in a wide range of human activities, hyperspectral remote sensing imaging (HSI) exhibits several challenges that prevent full exploitation of its data. In particular, land-cover classification based on HSI data suffers significant degradation due to problematic data variability. Convolutional Neural Networks (CNNs) ability to extract spectral-spatial features has enabled the development of powerful classifiers, which achieve not yet seen accuracy results. To enhance the feature extraction procedure, this paper presents a novel HSI-CNN model (DKDCNet) which combines adaptive deforming kernels (DK) and convolutions (DC) with the aim of pinpointing the effective receptive field (ERF) on the challenging input data. Experimental results on the University of Houston benchmark show that DKDCNet is able to obtain a more accurate classification than traditional strategies with similar computational cost for HSI classification. Source code: https://github.com/mhaut/DKDCNet.\",\"PeriodicalId\":315312,\"journal\":{\"name\":\"2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS\",\"volume\":\"92 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS47720.2021.9553134\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS47720.2021.9553134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

尽管高光谱遥感成像(HSI)在广泛的人类活动中具有巨大潜力,但它面临着一些阻碍其数据充分利用的挑战。特别是,基于HSI数据的土地覆盖分类由于数据变异性问题而严重退化。卷积神经网络(cnn)提取光谱空间特征的能力使强大的分类器得以发展,这些分类器取得了尚未见过的精度结果。为了改进特征提取过程,本文提出了一种新的HSI-CNN模型(DKDCNet),该模型结合了自适应变形核(DK)和卷积(DC),目的是在具有挑战性的输入数据上精确定位有效接受场(ERF)。在休斯顿大学基准上的实验结果表明,DKDCNet能够在计算成本相似的情况下获得比传统策略更准确的HSI分类。源代码:https://github.com/mhaut/DKDCNet。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adapting Kernels for Hyperspectral Image Classification
Despite its great potential in a wide range of human activities, hyperspectral remote sensing imaging (HSI) exhibits several challenges that prevent full exploitation of its data. In particular, land-cover classification based on HSI data suffers significant degradation due to problematic data variability. Convolutional Neural Networks (CNNs) ability to extract spectral-spatial features has enabled the development of powerful classifiers, which achieve not yet seen accuracy results. To enhance the feature extraction procedure, this paper presents a novel HSI-CNN model (DKDCNet) which combines adaptive deforming kernels (DK) and convolutions (DC) with the aim of pinpointing the effective receptive field (ERF) on the challenging input data. Experimental results on the University of Houston benchmark show that DKDCNet is able to obtain a more accurate classification than traditional strategies with similar computational cost for HSI classification. Source code: https://github.com/mhaut/DKDCNet.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信