部分双曲微分同态的中心拟合阴影性质

D. M. Al-Ftlawy, Iftichar M. T. Al-Shara’a
{"title":"部分双曲微分同态的中心拟合阴影性质","authors":"D. M. Al-Ftlawy, Iftichar M. T. Al-Shara’a","doi":"10.1109/ICEEICT56924.2023.10157665","DOIUrl":null,"url":null,"abstract":"The idea of shadowing in dynamical systems theory (DS) is to approximate the pseudo-orbit (PO) of certain dynamical systems (DS) by real orbits of course, depending on the type of approximation. The aim of this work to explain the stable fitting shadowing property for partially hyperbolic diffeomorphism, to clarification that if partially hyperbolic diffeomorphism contain $w_{i}$, where $i=1,2$ saddle points with indices not equal, then $\\mathcal{L}:M\\rightarrow M$ does not satisfy the fitting shadowing property FSP. On other hand can be achieved fitting shadowing property of a closed $C^{\\infty}$ of M(i.e., boundary less and compact) if the center is uniformly compact center foliation $(W^{c})$, to proof the main Theorem K.","PeriodicalId":345324,"journal":{"name":"2023 Second International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Center Fitting Shadowing Property for Partial Hyperbolic Diffeomorphisms\",\"authors\":\"D. M. Al-Ftlawy, Iftichar M. T. Al-Shara’a\",\"doi\":\"10.1109/ICEEICT56924.2023.10157665\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The idea of shadowing in dynamical systems theory (DS) is to approximate the pseudo-orbit (PO) of certain dynamical systems (DS) by real orbits of course, depending on the type of approximation. The aim of this work to explain the stable fitting shadowing property for partially hyperbolic diffeomorphism, to clarification that if partially hyperbolic diffeomorphism contain $w_{i}$, where $i=1,2$ saddle points with indices not equal, then $\\\\mathcal{L}:M\\\\rightarrow M$ does not satisfy the fitting shadowing property FSP. On other hand can be achieved fitting shadowing property of a closed $C^{\\\\infty}$ of M(i.e., boundary less and compact) if the center is uniformly compact center foliation $(W^{c})$, to proof the main Theorem K.\",\"PeriodicalId\":345324,\"journal\":{\"name\":\"2023 Second International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 Second International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEEICT56924.2023.10157665\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Second International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEICT56924.2023.10157665","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在动力系统理论(DS)中,阴影的思想是用实际轨道来近似某些动力系统(DS)的伪轨道(PO),当然,这取决于近似的类型。本文的目的是解释部分双曲微分同态的稳定拟合阴影性质,说明如果部分双曲微分同态包含$w_{i}$,其中$i=1,2$鞍点的指标不相等,则$\mathcal{L}:M\rightarrow M$不满足拟合阴影性质FSP。另一方面可以实现M(即)的封闭$C^{\infty}$的拟合遮蔽性。,无边界紧)如果中心是一致紧中心叶理$(W^{c})$,证明主要定理K。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Center Fitting Shadowing Property for Partial Hyperbolic Diffeomorphisms
The idea of shadowing in dynamical systems theory (DS) is to approximate the pseudo-orbit (PO) of certain dynamical systems (DS) by real orbits of course, depending on the type of approximation. The aim of this work to explain the stable fitting shadowing property for partially hyperbolic diffeomorphism, to clarification that if partially hyperbolic diffeomorphism contain $w_{i}$, where $i=1,2$ saddle points with indices not equal, then $\mathcal{L}:M\rightarrow M$ does not satisfy the fitting shadowing property FSP. On other hand can be achieved fitting shadowing property of a closed $C^{\infty}$ of M(i.e., boundary less and compact) if the center is uniformly compact center foliation $(W^{c})$, to proof the main Theorem K.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信