{"title":"一类具有传染性疾病的离散分数阶Logistic增长模型的动力学","authors":"H. S. Panigoro, Emli Rahmi","doi":"10.20473/CONMATHA.V3I1.25763","DOIUrl":null,"url":null,"abstract":"In this paper, we study the dynamics of a discrete fractional-order logistic growth model with infectious disease. We obtain the discrete model by applying the piecewise constant arguments to the fractional-order model. This model contains three fixed points namely the origin point, the disease-free point, and the endemic point. We confirm that the origin point is always exists and unstable, the disease-free point is always exists and conditionally stable, and the endemic point is conditionally exists and stable. We also investigate the existence of forward, period-doubling, and Neimark-Sacker bifurcation. The numerical simulations are also presented to confirm the analytical results. We also show numerically the existence of period-3 solution which leads to the occurrence of chaotic behavior.","PeriodicalId":119993,"journal":{"name":"Contemporary Mathematics and Applications (ConMathA)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The Dynamics of a Discrete Fractional-Order Logistic Growth Model with Infectious Disease\",\"authors\":\"H. S. Panigoro, Emli Rahmi\",\"doi\":\"10.20473/CONMATHA.V3I1.25763\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the dynamics of a discrete fractional-order logistic growth model with infectious disease. We obtain the discrete model by applying the piecewise constant arguments to the fractional-order model. This model contains three fixed points namely the origin point, the disease-free point, and the endemic point. We confirm that the origin point is always exists and unstable, the disease-free point is always exists and conditionally stable, and the endemic point is conditionally exists and stable. We also investigate the existence of forward, period-doubling, and Neimark-Sacker bifurcation. The numerical simulations are also presented to confirm the analytical results. We also show numerically the existence of period-3 solution which leads to the occurrence of chaotic behavior.\",\"PeriodicalId\":119993,\"journal\":{\"name\":\"Contemporary Mathematics and Applications (ConMathA)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contemporary Mathematics and Applications (ConMathA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20473/CONMATHA.V3I1.25763\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contemporary Mathematics and Applications (ConMathA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20473/CONMATHA.V3I1.25763","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Dynamics of a Discrete Fractional-Order Logistic Growth Model with Infectious Disease
In this paper, we study the dynamics of a discrete fractional-order logistic growth model with infectious disease. We obtain the discrete model by applying the piecewise constant arguments to the fractional-order model. This model contains three fixed points namely the origin point, the disease-free point, and the endemic point. We confirm that the origin point is always exists and unstable, the disease-free point is always exists and conditionally stable, and the endemic point is conditionally exists and stable. We also investigate the existence of forward, period-doubling, and Neimark-Sacker bifurcation. The numerical simulations are also presented to confirm the analytical results. We also show numerically the existence of period-3 solution which leads to the occurrence of chaotic behavior.