一类具有传染性疾病的离散分数阶Logistic增长模型的动力学

H. S. Panigoro, Emli Rahmi
{"title":"一类具有传染性疾病的离散分数阶Logistic增长模型的动力学","authors":"H. S. Panigoro, Emli Rahmi","doi":"10.20473/CONMATHA.V3I1.25763","DOIUrl":null,"url":null,"abstract":"In this paper, we study the dynamics of a discrete fractional-order logistic growth model with infectious disease. We obtain the discrete model by applying the piecewise constant arguments to the fractional-order model. This model contains three fixed points namely the origin point, the disease-free point, and the endemic point. We confirm that the origin point is always exists and unstable, the disease-free point is always exists and conditionally stable, and the endemic point is conditionally exists and stable. We also investigate the existence of forward, period-doubling, and Neimark-Sacker bifurcation. The numerical simulations are also presented to confirm the analytical results. We also show numerically the existence of period-3 solution which leads to the occurrence of chaotic behavior.","PeriodicalId":119993,"journal":{"name":"Contemporary Mathematics and Applications (ConMathA)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The Dynamics of a Discrete Fractional-Order Logistic Growth Model with Infectious Disease\",\"authors\":\"H. S. Panigoro, Emli Rahmi\",\"doi\":\"10.20473/CONMATHA.V3I1.25763\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the dynamics of a discrete fractional-order logistic growth model with infectious disease. We obtain the discrete model by applying the piecewise constant arguments to the fractional-order model. This model contains three fixed points namely the origin point, the disease-free point, and the endemic point. We confirm that the origin point is always exists and unstable, the disease-free point is always exists and conditionally stable, and the endemic point is conditionally exists and stable. We also investigate the existence of forward, period-doubling, and Neimark-Sacker bifurcation. The numerical simulations are also presented to confirm the analytical results. We also show numerically the existence of period-3 solution which leads to the occurrence of chaotic behavior.\",\"PeriodicalId\":119993,\"journal\":{\"name\":\"Contemporary Mathematics and Applications (ConMathA)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contemporary Mathematics and Applications (ConMathA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20473/CONMATHA.V3I1.25763\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contemporary Mathematics and Applications (ConMathA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20473/CONMATHA.V3I1.25763","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文研究了一类具有传染性疾病的离散分数阶logistic增长模型的动力学问题。将分段常数参数应用于分数阶模型,得到离散模型。该模型包含三个不动点,即原点、无病点和地方病点。我们确认原点总是存在且不稳定,无病点总是存在且有条件稳定,地方病点是有条件存在且稳定。我们还研究了正向、周期加倍和neimmark - sacker分岔的存在性。通过数值模拟验证了分析结果。我们还用数值方法证明了导致混沌行为发生的周期3解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Dynamics of a Discrete Fractional-Order Logistic Growth Model with Infectious Disease
In this paper, we study the dynamics of a discrete fractional-order logistic growth model with infectious disease. We obtain the discrete model by applying the piecewise constant arguments to the fractional-order model. This model contains three fixed points namely the origin point, the disease-free point, and the endemic point. We confirm that the origin point is always exists and unstable, the disease-free point is always exists and conditionally stable, and the endemic point is conditionally exists and stable. We also investigate the existence of forward, period-doubling, and Neimark-Sacker bifurcation. The numerical simulations are also presented to confirm the analytical results. We also show numerically the existence of period-3 solution which leads to the occurrence of chaotic behavior.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信