基于傅里叶变换的k·p方法:一种低维异质结构的无网格建模方法

T. Mei, Q. J. Zhao, D. H. Zhang
{"title":"基于傅里叶变换的k·p方法:一种低维异质结构的无网格建模方法","authors":"T. Mei, Q. J. Zhao, D. H. Zhang","doi":"10.1109/PGC.2012.6458079","DOIUrl":null,"url":null,"abstract":"Among methods modeling electronic structures of low dimensional heterostructures, such as first principles, tight binding, k·p, etc., the multiband k·p method is the most effective for low dimensional systems with a big compilation of atoms such as quantum dots. Numerical implementation like the finite difference method and the finite element method engages differential or integral process and thus requires a 3D-space mesh. In our developed Fourier transform-based k·p method (FTM), both Hamiltonian matrix and envelope functions are formulated in Fourier domain. The analytical Fourier transform of the 3D shape function of the object can be adopted such that meshing 3D space is avoidable in retrieving eigen solutions of k·p equations. Both the kinetic part and the strain have been incorporated in the Hamiltonian equation. The FTM demonstrates advantage on controlling spurious solutions due to its inborn cut-off process, whereas incorporation of Burt-Foreman operator ordering further enhances the merit.","PeriodicalId":158783,"journal":{"name":"2012 Photonics Global Conference (PGC)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fourier transform-based k·p method: An approach to meshless modeling of low-dimensional heterostructures\",\"authors\":\"T. Mei, Q. J. Zhao, D. H. Zhang\",\"doi\":\"10.1109/PGC.2012.6458079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Among methods modeling electronic structures of low dimensional heterostructures, such as first principles, tight binding, k·p, etc., the multiband k·p method is the most effective for low dimensional systems with a big compilation of atoms such as quantum dots. Numerical implementation like the finite difference method and the finite element method engages differential or integral process and thus requires a 3D-space mesh. In our developed Fourier transform-based k·p method (FTM), both Hamiltonian matrix and envelope functions are formulated in Fourier domain. The analytical Fourier transform of the 3D shape function of the object can be adopted such that meshing 3D space is avoidable in retrieving eigen solutions of k·p equations. Both the kinetic part and the strain have been incorporated in the Hamiltonian equation. The FTM demonstrates advantage on controlling spurious solutions due to its inborn cut-off process, whereas incorporation of Burt-Foreman operator ordering further enhances the merit.\",\"PeriodicalId\":158783,\"journal\":{\"name\":\"2012 Photonics Global Conference (PGC)\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Photonics Global Conference (PGC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PGC.2012.6458079\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Photonics Global Conference (PGC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PGC.2012.6458079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在第一性原理、紧密结合、k·p等低维异质结构的电子结构建模方法中,多波段k·p方法对于量子点等原子数量较多的低维系统最为有效。像有限差分法和有限元法这样的数值实现涉及微分或积分过程,因此需要三维空间网格。在我们开发的基于傅里叶变换的k·p方法(FTM)中,哈密顿矩阵和包络函数都在傅里叶域中表示。在检索k·p方程的特征解时,可以采用物体三维形状函数的解析傅里叶变换,从而避免了三维空间的网格化。在哈密顿方程中包含了动力学部分和应变。由于固有的截止过程,FTM在控制伪解方面具有优势,而引入Burt-Foreman算子排序进一步增强了FTM的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fourier transform-based k·p method: An approach to meshless modeling of low-dimensional heterostructures
Among methods modeling electronic structures of low dimensional heterostructures, such as first principles, tight binding, k·p, etc., the multiband k·p method is the most effective for low dimensional systems with a big compilation of atoms such as quantum dots. Numerical implementation like the finite difference method and the finite element method engages differential or integral process and thus requires a 3D-space mesh. In our developed Fourier transform-based k·p method (FTM), both Hamiltonian matrix and envelope functions are formulated in Fourier domain. The analytical Fourier transform of the 3D shape function of the object can be adopted such that meshing 3D space is avoidable in retrieving eigen solutions of k·p equations. Both the kinetic part and the strain have been incorporated in the Hamiltonian equation. The FTM demonstrates advantage on controlling spurious solutions due to its inborn cut-off process, whereas incorporation of Burt-Foreman operator ordering further enhances the merit.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信