霍克斯图

P. Embrechts, Matthias Kirchner
{"title":"霍克斯图","authors":"P. Embrechts, Matthias Kirchner","doi":"10.2139/ssrn.3099022","DOIUrl":null,"url":null,"abstract":"This paper introduces the Hawkes skeleton and the Hawkes graph. These objects summarize the branching structure of a multivariate Hawkes point process in a compact, yet meaningful way. We demonstrate how graph-theoretic vocabulary ('ancestor sets', 'parent sets', 'connectivity', 'walks', 'walk weights', ... ) is very convenient for the discussion of multivariate Hawkes processes. For example, we reformulate the classic eigenvalue-based subcriticality criterion of multitype branching processes in graph terms. Next to these more terminological contributions, we show how the graph view may be used for the specification and estimation of Hawkes models from large, multitype event streams. Based on earlier work, we give a nonparametric statistical procedure to estimate the Hawkes skeleton and the Hawkes graph from data. We show how the graph estimation may then be used for specifying and fitting parametric Hawkes models. Our estimation method avoids the a priori assumptions on the model from a straightforward MLE-approach and is numerically more flexible than the latter. Our method has two tuning parameters: one controlling numerical complexity, the other one controlling the sparseness of the estimated graph. A simulation study confirms that the presented procedure works as desired. We pay special attention to computational issues in the implementation. This makes our results applicable to high-dimensional event-stream data, such as dozens of event streams and thousands of events per component.","PeriodicalId":269529,"journal":{"name":"Swiss Finance Institute Research Paper Series","volume":"179 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Hawkes Graphs\",\"authors\":\"P. Embrechts, Matthias Kirchner\",\"doi\":\"10.2139/ssrn.3099022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces the Hawkes skeleton and the Hawkes graph. These objects summarize the branching structure of a multivariate Hawkes point process in a compact, yet meaningful way. We demonstrate how graph-theoretic vocabulary ('ancestor sets', 'parent sets', 'connectivity', 'walks', 'walk weights', ... ) is very convenient for the discussion of multivariate Hawkes processes. For example, we reformulate the classic eigenvalue-based subcriticality criterion of multitype branching processes in graph terms. Next to these more terminological contributions, we show how the graph view may be used for the specification and estimation of Hawkes models from large, multitype event streams. Based on earlier work, we give a nonparametric statistical procedure to estimate the Hawkes skeleton and the Hawkes graph from data. We show how the graph estimation may then be used for specifying and fitting parametric Hawkes models. Our estimation method avoids the a priori assumptions on the model from a straightforward MLE-approach and is numerically more flexible than the latter. Our method has two tuning parameters: one controlling numerical complexity, the other one controlling the sparseness of the estimated graph. A simulation study confirms that the presented procedure works as desired. We pay special attention to computational issues in the implementation. This makes our results applicable to high-dimensional event-stream data, such as dozens of event streams and thousands of events per component.\",\"PeriodicalId\":269529,\"journal\":{\"name\":\"Swiss Finance Institute Research Paper Series\",\"volume\":\"179 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Swiss Finance Institute Research Paper Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3099022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swiss Finance Institute Research Paper Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3099022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

本文介绍了霍克斯骨架和霍克斯图。这些对象以简洁而有意义的方式总结了多元Hawkes点过程的分支结构。我们演示了图论词汇(“祖先集”、“父集”、“连通性”、“行走”、“行走权重”……)对于多元霍克斯过程的讨论是非常方便的。例如,我们在图项中重新表述了经典的基于特征值的多类型分支过程亚临界准则。除了这些更多的术语贡献之外,我们还展示了如何将图视图用于从大型、多类型事件流中对Hawkes模型进行规范和估计。在前人工作的基础上,我们给出了一种非参数统计方法来估计Hawkes骨架和Hawkes图。我们展示了如何使用图估计来指定和拟合参数Hawkes模型。我们的估计方法避免了直接的mle方法对模型的先验假设,并且在数值上比后者更灵活。该方法有两个可调参数:一个控制数值复杂度,另一个控制估计图的稀疏性。仿真研究证实了所提出的程序的工作原理。我们特别注意实现中的计算问题。这使得我们的结果适用于高维事件流数据,例如每个组件有数十个事件流和数千个事件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hawkes Graphs
This paper introduces the Hawkes skeleton and the Hawkes graph. These objects summarize the branching structure of a multivariate Hawkes point process in a compact, yet meaningful way. We demonstrate how graph-theoretic vocabulary ('ancestor sets', 'parent sets', 'connectivity', 'walks', 'walk weights', ... ) is very convenient for the discussion of multivariate Hawkes processes. For example, we reformulate the classic eigenvalue-based subcriticality criterion of multitype branching processes in graph terms. Next to these more terminological contributions, we show how the graph view may be used for the specification and estimation of Hawkes models from large, multitype event streams. Based on earlier work, we give a nonparametric statistical procedure to estimate the Hawkes skeleton and the Hawkes graph from data. We show how the graph estimation may then be used for specifying and fitting parametric Hawkes models. Our estimation method avoids the a priori assumptions on the model from a straightforward MLE-approach and is numerically more flexible than the latter. Our method has two tuning parameters: one controlling numerical complexity, the other one controlling the sparseness of the estimated graph. A simulation study confirms that the presented procedure works as desired. We pay special attention to computational issues in the implementation. This makes our results applicable to high-dimensional event-stream data, such as dozens of event streams and thousands of events per component.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信