含绕组热损耗的无刷直流电动机的超稳定与瞬态混沌分析

Qiang Wang, Enzeng Dong, Shengzhi Du, Jigang Tong, Hui Yu, F. Duan
{"title":"含绕组热损耗的无刷直流电动机的超稳定与瞬态混沌分析","authors":"Qiang Wang, Enzeng Dong, Shengzhi Du, Jigang Tong, Hui Yu, F. Duan","doi":"10.1109/ICMA54519.2022.9856249","DOIUrl":null,"url":null,"abstract":"The parameters of stator winding of brushless DC motor will change under the influence of temperature. The model of brushless DC motor with temperature-affected winding is established, and the influence of steady-state temperature on the motor system under different heat dissipation conditions is investigated, and its dynamic characteristics are also explored. The stability of brushless DC motor is observed by using basin stability. For some parameters, the system can exhibit point attractors, the mega-stability of multiple nested periodic rings and chaos phenomena. By means of mathematical statistics and function fitting, the transient chaotic phenomena of the system under some parameters are examined.","PeriodicalId":120073,"journal":{"name":"2022 IEEE International Conference on Mechatronics and Automation (ICMA)","volume":"141 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mega-Stability and Transient Chaos Analysis of Brushless DC Motor with Winding Heat Loss\",\"authors\":\"Qiang Wang, Enzeng Dong, Shengzhi Du, Jigang Tong, Hui Yu, F. Duan\",\"doi\":\"10.1109/ICMA54519.2022.9856249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The parameters of stator winding of brushless DC motor will change under the influence of temperature. The model of brushless DC motor with temperature-affected winding is established, and the influence of steady-state temperature on the motor system under different heat dissipation conditions is investigated, and its dynamic characteristics are also explored. The stability of brushless DC motor is observed by using basin stability. For some parameters, the system can exhibit point attractors, the mega-stability of multiple nested periodic rings and chaos phenomena. By means of mathematical statistics and function fitting, the transient chaotic phenomena of the system under some parameters are examined.\",\"PeriodicalId\":120073,\"journal\":{\"name\":\"2022 IEEE International Conference on Mechatronics and Automation (ICMA)\",\"volume\":\"141 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Mechatronics and Automation (ICMA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMA54519.2022.9856249\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Mechatronics and Automation (ICMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMA54519.2022.9856249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

无刷直流电动机定子绕组的参数在温度的影响下会发生变化。建立了带温度影响绕组的无刷直流电动机模型,研究了不同散热条件下稳态温度对电机系统的影响,并探讨了其动态特性。用盆稳定性法观察了无刷直流电动机的稳定性。对于某些参数,系统表现出点吸引子、多嵌套周期环的超稳定和混沌现象。采用数理统计和函数拟合的方法,研究了系统在一定参数下的瞬态混沌现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mega-Stability and Transient Chaos Analysis of Brushless DC Motor with Winding Heat Loss
The parameters of stator winding of brushless DC motor will change under the influence of temperature. The model of brushless DC motor with temperature-affected winding is established, and the influence of steady-state temperature on the motor system under different heat dissipation conditions is investigated, and its dynamic characteristics are also explored. The stability of brushless DC motor is observed by using basin stability. For some parameters, the system can exhibit point attractors, the mega-stability of multiple nested periodic rings and chaos phenomena. By means of mathematical statistics and function fitting, the transient chaotic phenomena of the system under some parameters are examined.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信