喷泉

Tirthak Patel, Daniel Silver, Devesh Tiwari
{"title":"喷泉","authors":"Tirthak Patel, Daniel Silver, Devesh Tiwari","doi":"10.1145/3470496.3527428","DOIUrl":null,"url":null,"abstract":"Compared to widely-used superconducting qubits, neutral-atom quantum computing technology promises potentially better scalability and flexible arrangement of qubits to allow higher operation parallelism and more relaxed cooling requirements. The high performance computing (HPC) and architecture community is beginning to design new solutions to take advantage of neutral-atom quantum architectures and overcome its unique challenges. We propose Geyser, the first work to take advantage of the multi-qubit gates natively supported by neutral-atom quantum computers by appropriately mapping quantum circuits to three-qubit-friendly physical arrangement of qubits. Then, Geyser creates multiple logical blocks in the quantum circuit to exploit quantum parallelism and reduce the number of pulses needed to realize physical gates. These circuit blocks elegantly enable Geyser to compose equivalent circuits with three-qubit gates, even when the original program does not have any multi-qubit gates. Our evaluation results show Geyser reduces the number of operation pulses by 25%-90% and improves the algorithm's output fidelity by 25%-60% points across different algorithms.","PeriodicalId":337932,"journal":{"name":"Proceedings of the 49th Annual International Symposium on Computer Architecture","volume":"15 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Geyser\",\"authors\":\"Tirthak Patel, Daniel Silver, Devesh Tiwari\",\"doi\":\"10.1145/3470496.3527428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compared to widely-used superconducting qubits, neutral-atom quantum computing technology promises potentially better scalability and flexible arrangement of qubits to allow higher operation parallelism and more relaxed cooling requirements. The high performance computing (HPC) and architecture community is beginning to design new solutions to take advantage of neutral-atom quantum architectures and overcome its unique challenges. We propose Geyser, the first work to take advantage of the multi-qubit gates natively supported by neutral-atom quantum computers by appropriately mapping quantum circuits to three-qubit-friendly physical arrangement of qubits. Then, Geyser creates multiple logical blocks in the quantum circuit to exploit quantum parallelism and reduce the number of pulses needed to realize physical gates. These circuit blocks elegantly enable Geyser to compose equivalent circuits with three-qubit gates, even when the original program does not have any multi-qubit gates. Our evaluation results show Geyser reduces the number of operation pulses by 25%-90% and improves the algorithm's output fidelity by 25%-60% points across different algorithms.\",\"PeriodicalId\":337932,\"journal\":{\"name\":\"Proceedings of the 49th Annual International Symposium on Computer Architecture\",\"volume\":\"15 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 49th Annual International Symposium on Computer Architecture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3470496.3527428\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 49th Annual International Symposium on Computer Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3470496.3527428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geyser
Compared to widely-used superconducting qubits, neutral-atom quantum computing technology promises potentially better scalability and flexible arrangement of qubits to allow higher operation parallelism and more relaxed cooling requirements. The high performance computing (HPC) and architecture community is beginning to design new solutions to take advantage of neutral-atom quantum architectures and overcome its unique challenges. We propose Geyser, the first work to take advantage of the multi-qubit gates natively supported by neutral-atom quantum computers by appropriately mapping quantum circuits to three-qubit-friendly physical arrangement of qubits. Then, Geyser creates multiple logical blocks in the quantum circuit to exploit quantum parallelism and reduce the number of pulses needed to realize physical gates. These circuit blocks elegantly enable Geyser to compose equivalent circuits with three-qubit gates, even when the original program does not have any multi-qubit gates. Our evaluation results show Geyser reduces the number of operation pulses by 25%-90% and improves the algorithm's output fidelity by 25%-60% points across different algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信