{"title":"深度残留网络改善阿尔茨海默病诊断","authors":"Aly A. Valliani, Ameet Soni","doi":"10.1145/3107411.3108224","DOIUrl":null,"url":null,"abstract":"We propose a framework that leverages deep residual CNNs pretrained on large, non-biomedical image data sets. These pretrained networks learn cross-domain features that improve low-level interpretation of images. We evaluate our model on brain imaging data and show that pretraining and the use of deep residual networks are crucial to seeing large improvements in Alzheimer's Disease diagnosis from brain MRIs.","PeriodicalId":246388,"journal":{"name":"Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":"{\"title\":\"Deep Residual Nets for Improved Alzheimer's Diagnosis\",\"authors\":\"Aly A. Valliani, Ameet Soni\",\"doi\":\"10.1145/3107411.3108224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a framework that leverages deep residual CNNs pretrained on large, non-biomedical image data sets. These pretrained networks learn cross-domain features that improve low-level interpretation of images. We evaluate our model on brain imaging data and show that pretraining and the use of deep residual networks are crucial to seeing large improvements in Alzheimer's Disease diagnosis from brain MRIs.\",\"PeriodicalId\":246388,\"journal\":{\"name\":\"Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"59\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3107411.3108224\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3107411.3108224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep Residual Nets for Improved Alzheimer's Diagnosis
We propose a framework that leverages deep residual CNNs pretrained on large, non-biomedical image data sets. These pretrained networks learn cross-domain features that improve low-level interpretation of images. We evaluate our model on brain imaging data and show that pretraining and the use of deep residual networks are crucial to seeing large improvements in Alzheimer's Disease diagnosis from brain MRIs.