深度残留网络改善阿尔茨海默病诊断

Aly A. Valliani, Ameet Soni
{"title":"深度残留网络改善阿尔茨海默病诊断","authors":"Aly A. Valliani, Ameet Soni","doi":"10.1145/3107411.3108224","DOIUrl":null,"url":null,"abstract":"We propose a framework that leverages deep residual CNNs pretrained on large, non-biomedical image data sets. These pretrained networks learn cross-domain features that improve low-level interpretation of images. We evaluate our model on brain imaging data and show that pretraining and the use of deep residual networks are crucial to seeing large improvements in Alzheimer's Disease diagnosis from brain MRIs.","PeriodicalId":246388,"journal":{"name":"Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":"{\"title\":\"Deep Residual Nets for Improved Alzheimer's Diagnosis\",\"authors\":\"Aly A. Valliani, Ameet Soni\",\"doi\":\"10.1145/3107411.3108224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a framework that leverages deep residual CNNs pretrained on large, non-biomedical image data sets. These pretrained networks learn cross-domain features that improve low-level interpretation of images. We evaluate our model on brain imaging data and show that pretraining and the use of deep residual networks are crucial to seeing large improvements in Alzheimer's Disease diagnosis from brain MRIs.\",\"PeriodicalId\":246388,\"journal\":{\"name\":\"Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"59\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3107411.3108224\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3107411.3108224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 59

摘要

我们提出了一个框架,利用深度残差cnn在大型非生物医学图像数据集上进行预训练。这些预训练的网络学习跨域特征,提高图像的低级解释。我们在脑成像数据上评估了我们的模型,并表明预训练和深度残差网络的使用对于从脑mri中看到阿尔茨海默病诊断的巨大改善至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Residual Nets for Improved Alzheimer's Diagnosis
We propose a framework that leverages deep residual CNNs pretrained on large, non-biomedical image data sets. These pretrained networks learn cross-domain features that improve low-level interpretation of images. We evaluate our model on brain imaging data and show that pretraining and the use of deep residual networks are crucial to seeing large improvements in Alzheimer's Disease diagnosis from brain MRIs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信