基于约束粒子滤波的无人机监视内外目标协调对峙跟踪

H. Oh, Cunjia Liu, Seungkeun Kim, Hyo-Sang Shin, Wen‐Hua Chen
{"title":"基于约束粒子滤波的无人机监视内外目标协调对峙跟踪","authors":"H. Oh, Cunjia Liu, Seungkeun Kim, Hyo-Sang Shin, Wen‐Hua Chen","doi":"10.1109/IVS.2015.7225734","DOIUrl":null,"url":null,"abstract":"This paper presents a new standoff tracking framework of a moving ground target using UAVs with a limited sensing capability such as sensor field-of-view and motion constraints. To maintain persistent track of the target even in case of target loss (out of surveillance) for a certain period, this study predicts the target existence area using the particle filter, and produces control commands to ensure that all predicted particles can be covered by the field-of-view of the UAV sensor at all times. To improve target prediction/estimation accuracy, the road information is incorporated into the constrained particle filter where the road boundaries are modelled as nonlinear inequality constraints. Both Lyapunov vector field guidance and nonlinear model predictive control methods are applied for the standoff tracking and phase angle control, and the advantages and disadvantages of them are compared using numerical simulation results.","PeriodicalId":294701,"journal":{"name":"2015 IEEE Intelligent Vehicles Symposium (IV)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Coordinated standoff tracking of in- and out-of-surveillance targets using constrained particle filter for UAVs\",\"authors\":\"H. Oh, Cunjia Liu, Seungkeun Kim, Hyo-Sang Shin, Wen‐Hua Chen\",\"doi\":\"10.1109/IVS.2015.7225734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new standoff tracking framework of a moving ground target using UAVs with a limited sensing capability such as sensor field-of-view and motion constraints. To maintain persistent track of the target even in case of target loss (out of surveillance) for a certain period, this study predicts the target existence area using the particle filter, and produces control commands to ensure that all predicted particles can be covered by the field-of-view of the UAV sensor at all times. To improve target prediction/estimation accuracy, the road information is incorporated into the constrained particle filter where the road boundaries are modelled as nonlinear inequality constraints. Both Lyapunov vector field guidance and nonlinear model predictive control methods are applied for the standoff tracking and phase angle control, and the advantages and disadvantages of them are compared using numerical simulation results.\",\"PeriodicalId\":294701,\"journal\":{\"name\":\"2015 IEEE Intelligent Vehicles Symposium (IV)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Intelligent Vehicles Symposium (IV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2015.7225734\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2015.7225734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种利用传感器视场和运动约束等传感能力有限的无人机对移动地面目标进行对峙跟踪的新框架。为了在目标丢失(脱离监视)一段时间内保持对目标的持续跟踪,本研究利用粒子滤波对目标存在区域进行预测,并生成控制命令,保证所有预测的粒子始终被无人机传感器的视场覆盖。为了提高目标的预测/估计精度,将道路信息纳入约束粒子滤波中,其中道路边界建模为非线性不等式约束。采用李雅普诺夫矢量场制导和非线性模型预测控制两种方法进行了对峙跟踪和相角控制,并通过数值仿真结果比较了两种方法的优缺点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coordinated standoff tracking of in- and out-of-surveillance targets using constrained particle filter for UAVs
This paper presents a new standoff tracking framework of a moving ground target using UAVs with a limited sensing capability such as sensor field-of-view and motion constraints. To maintain persistent track of the target even in case of target loss (out of surveillance) for a certain period, this study predicts the target existence area using the particle filter, and produces control commands to ensure that all predicted particles can be covered by the field-of-view of the UAV sensor at all times. To improve target prediction/estimation accuracy, the road information is incorporated into the constrained particle filter where the road boundaries are modelled as nonlinear inequality constraints. Both Lyapunov vector field guidance and nonlinear model predictive control methods are applied for the standoff tracking and phase angle control, and the advantages and disadvantages of them are compared using numerical simulation results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信