基于匿名流动数据的动态人口估计

Xiang Liu, Philo Pöllmann
{"title":"基于匿名流动数据的动态人口估计","authors":"Xiang Liu, Philo Pöllmann","doi":"10.1145/3397536.3422203","DOIUrl":null,"url":null,"abstract":"Fine population distribution both in space and in time is crucial for epidemic management, disaster prevention, urban planning and more. Human mobility data have a great potential for mapping population distribution at a high level of spatiotemporal resolution. Power law models are the most popular ones for mapping mobility data to population. However, they fail to provide consistent estimations under different spatial and temporal resolutions, i.e. they have to be recalibrated whenever the spatial or temporal partitioning scheme changes. We propose a Bayesian model for dynamic population estimation using static census data and anonymized mobility data. Our model gives consistent population estimations under different spatial and temporal resolutions.","PeriodicalId":233918,"journal":{"name":"Proceedings of the 28th International Conference on Advances in Geographic Information Systems","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dynamic Population Estimation Using Anonymized Mobility Data\",\"authors\":\"Xiang Liu, Philo Pöllmann\",\"doi\":\"10.1145/3397536.3422203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fine population distribution both in space and in time is crucial for epidemic management, disaster prevention, urban planning and more. Human mobility data have a great potential for mapping population distribution at a high level of spatiotemporal resolution. Power law models are the most popular ones for mapping mobility data to population. However, they fail to provide consistent estimations under different spatial and temporal resolutions, i.e. they have to be recalibrated whenever the spatial or temporal partitioning scheme changes. We propose a Bayesian model for dynamic population estimation using static census data and anonymized mobility data. Our model gives consistent population estimations under different spatial and temporal resolutions.\",\"PeriodicalId\":233918,\"journal\":{\"name\":\"Proceedings of the 28th International Conference on Advances in Geographic Information Systems\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 28th International Conference on Advances in Geographic Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3397536.3422203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3397536.3422203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

人口在空间和时间上的良好分布对疫情管理、灾害预防、城市规划等至关重要。人口流动数据在高时空分辨率的人口分布制图中具有很大的潜力。幂律模型是将流动性数据映射到人口的最常用模型。然而,在不同的时空分辨率下,它们不能提供一致的估计,即当空间或时间划分方案发生变化时,它们必须重新校准。本文提出了一种基于静态人口普查数据和匿名人口流动数据的动态人口估计贝叶斯模型。我们的模型在不同的空间和时间分辨率下给出了一致的人口估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic Population Estimation Using Anonymized Mobility Data
Fine population distribution both in space and in time is crucial for epidemic management, disaster prevention, urban planning and more. Human mobility data have a great potential for mapping population distribution at a high level of spatiotemporal resolution. Power law models are the most popular ones for mapping mobility data to population. However, they fail to provide consistent estimations under different spatial and temporal resolutions, i.e. they have to be recalibrated whenever the spatial or temporal partitioning scheme changes. We propose a Bayesian model for dynamic population estimation using static census data and anonymized mobility data. Our model gives consistent population estimations under different spatial and temporal resolutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信