解开ChatGPT:人工智能生成的面向目标的对话和注释的关键分析

Tiziano Labruna, Sofia Brenna, Andrea Zaninello, B. Magnini
{"title":"解开ChatGPT:人工智能生成的面向目标的对话和注释的关键分析","authors":"Tiziano Labruna, Sofia Brenna, Andrea Zaninello, B. Magnini","doi":"10.48550/arXiv.2305.14556","DOIUrl":null,"url":null,"abstract":"Large pre-trained language models have exhibited unprecedented capabilities in producing high-quality text via prompting techniques. This fact introduces new possibilities for data collection and annotation, particularly in situations where such data is scarce, complex to gather, expensive, or even sensitive. In this paper, we explore the potential of these models to generate and annotate goal-oriented dialogues, and conduct an in-depth analysis to evaluate their quality. Our experiments employ ChatGPT, and encompass three categories of goal-oriented dialogues (task-oriented, collaborative, and explanatory), two generation modes (interactive and one-shot), and two languages (English and Italian). Based on extensive human-based evaluations, we demonstrate that the quality of generated dialogues and annotations is on par with those generated by humans.","PeriodicalId":293643,"journal":{"name":"International Conference of the Italian Association for Artificial Intelligence","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Unraveling ChatGPT: A Critical Analysis of AI-Generated Goal-Oriented Dialogues and Annotations\",\"authors\":\"Tiziano Labruna, Sofia Brenna, Andrea Zaninello, B. Magnini\",\"doi\":\"10.48550/arXiv.2305.14556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large pre-trained language models have exhibited unprecedented capabilities in producing high-quality text via prompting techniques. This fact introduces new possibilities for data collection and annotation, particularly in situations where such data is scarce, complex to gather, expensive, or even sensitive. In this paper, we explore the potential of these models to generate and annotate goal-oriented dialogues, and conduct an in-depth analysis to evaluate their quality. Our experiments employ ChatGPT, and encompass three categories of goal-oriented dialogues (task-oriented, collaborative, and explanatory), two generation modes (interactive and one-shot), and two languages (English and Italian). Based on extensive human-based evaluations, we demonstrate that the quality of generated dialogues and annotations is on par with those generated by humans.\",\"PeriodicalId\":293643,\"journal\":{\"name\":\"International Conference of the Italian Association for Artificial Intelligence\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference of the Italian Association for Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2305.14556\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference of the Italian Association for Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2305.14556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

大型预训练语言模型在通过提示技术产生高质量文本方面表现出前所未有的能力。这一事实为数据收集和注释带来了新的可能性,特别是在此类数据稀缺、收集复杂、昂贵甚至敏感的情况下。在本文中,我们探索了这些模型在生成和注释目标导向对话方面的潜力,并进行了深入的分析来评估它们的质量。我们的实验使用ChatGPT,并包含三类面向目标的对话(面向任务、协作和解释)、两种生成模式(交互式和一次性)和两种语言(英语和意大利语)。基于广泛的基于人类的评估,我们证明了生成的对话和注释的质量与人类生成的质量相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unraveling ChatGPT: A Critical Analysis of AI-Generated Goal-Oriented Dialogues and Annotations
Large pre-trained language models have exhibited unprecedented capabilities in producing high-quality text via prompting techniques. This fact introduces new possibilities for data collection and annotation, particularly in situations where such data is scarce, complex to gather, expensive, or even sensitive. In this paper, we explore the potential of these models to generate and annotate goal-oriented dialogues, and conduct an in-depth analysis to evaluate their quality. Our experiments employ ChatGPT, and encompass three categories of goal-oriented dialogues (task-oriented, collaborative, and explanatory), two generation modes (interactive and one-shot), and two languages (English and Italian). Based on extensive human-based evaluations, we demonstrate that the quality of generated dialogues and annotations is on par with those generated by humans.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信