V. Mishra, R. Prasad, Pradeep Kumar, D. Gupta, P. Dikshit, S. B. Dwivedi, A. Ohri
{"title":"空间分辨率对土地利用和土地覆盖分类精度的影响评价","authors":"V. Mishra, R. Prasad, Pradeep Kumar, D. Gupta, P. Dikshit, S. B. Dwivedi, A. Ohri","doi":"10.1109/ICMOCE.2015.7489727","DOIUrl":null,"url":null,"abstract":"The choice of appropriate spatial resolution is a key factor to extract desired information from remotely sensed images. Optical data collected by two different sensors (LISS IV with 5.8 m and Landsat 8-OLI with 30 m spatial resolution respectively) were investigated against the capability to classify accurately into distinct land use and land cover (LULC) classes. To evaluate the quality of training samples class separability analysis using transformed divergence (TD) method was performed. Furthermore, supervised maximum likelihood classifier (MLC) was used to carry out LULC classification. The results indicated that the overall accuracy 83.28% and Kappa coefficient 0.805 for LISS IV image was found higher in comparison to Landsat 8-OLI image having overall accuracy 77.93% and Kappa coefficient 0.742 respectively.","PeriodicalId":352568,"journal":{"name":"2015 International Conference on Microwave, Optical and Communication Engineering (ICMOCE)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Evaluating the effects of spatial resolution on land use and land cover classification accuracy\",\"authors\":\"V. Mishra, R. Prasad, Pradeep Kumar, D. Gupta, P. Dikshit, S. B. Dwivedi, A. Ohri\",\"doi\":\"10.1109/ICMOCE.2015.7489727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The choice of appropriate spatial resolution is a key factor to extract desired information from remotely sensed images. Optical data collected by two different sensors (LISS IV with 5.8 m and Landsat 8-OLI with 30 m spatial resolution respectively) were investigated against the capability to classify accurately into distinct land use and land cover (LULC) classes. To evaluate the quality of training samples class separability analysis using transformed divergence (TD) method was performed. Furthermore, supervised maximum likelihood classifier (MLC) was used to carry out LULC classification. The results indicated that the overall accuracy 83.28% and Kappa coefficient 0.805 for LISS IV image was found higher in comparison to Landsat 8-OLI image having overall accuracy 77.93% and Kappa coefficient 0.742 respectively.\",\"PeriodicalId\":352568,\"journal\":{\"name\":\"2015 International Conference on Microwave, Optical and Communication Engineering (ICMOCE)\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Microwave, Optical and Communication Engineering (ICMOCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMOCE.2015.7489727\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Microwave, Optical and Communication Engineering (ICMOCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMOCE.2015.7489727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evaluating the effects of spatial resolution on land use and land cover classification accuracy
The choice of appropriate spatial resolution is a key factor to extract desired information from remotely sensed images. Optical data collected by two different sensors (LISS IV with 5.8 m and Landsat 8-OLI with 30 m spatial resolution respectively) were investigated against the capability to classify accurately into distinct land use and land cover (LULC) classes. To evaluate the quality of training samples class separability analysis using transformed divergence (TD) method was performed. Furthermore, supervised maximum likelihood classifier (MLC) was used to carry out LULC classification. The results indicated that the overall accuracy 83.28% and Kappa coefficient 0.805 for LISS IV image was found higher in comparison to Landsat 8-OLI image having overall accuracy 77.93% and Kappa coefficient 0.742 respectively.